首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chlorophyll (Chl) fluorescence imaging technique was applied to cashew seedlings inoculated with the fungus Lasiodiplodia theobromae to assess any disturbances in the photosynthetic apparatus of the plants before the onset of visual symptoms. Two-month-old cashew plants were inoculated with mycelium of L. theobromae isolate Lt19 or Lt32. Dark-adapted and light-acclimated whole plants or previously labelled, single, mature leaf from each plant were evaluated weekly for Chl fluorescence parameters. From 21 to 28 days, inoculation with both isolates resulted in the significantly lower maximal photochemical quantum yield of PSII (Fv/Fm) than those for control samples, decreasing from values of 0.78 to 0.62. In contrast, the time response of the measured fluorescence transient curve from dark-acclimated plants increased in both whole plants and single mature leaves in inoculated plants compared with controls. The Fv/Fm images clearly exhibited photosynthetic perturbations 14 days after inoculation before any visual symptoms appeared. Additionally, decays in the effective quantum yield of PSII photochemistry and photochemical quenching coefficient were also observed over time. However, nonphotochemical quenching increased during the evaluation period. We conclude that Fv/Fm images are the effective way of detecting early metabolic perturbations in the photosynthetic apparatus of cashew seedlings caused by gummosis in both whole plants and single leaves and could be potentially employed in larger-scale screening systems.  相似文献   

2.
Changes in chloroplast structure and rearrangement of chlorophyll-protein (CP) complexes were investigated in detached leaves of bean (Phaseolus vulgaris L. cv. Eureka), a chilling-sensitive plant, during 5-day dark-chilling at 1 °C and subsequent 3-h photoactivation under white light (200 μmol photons m−2 s−1) at 22 °C. Although, no change in chlorophyll (Chl) content and Chl a/b ratio in all samples was observed, overall fluorescence intensity of fluorescence emission and excitation spectra of thylakoid membranes isolated from dark-chilled leaves decreased to about 50%, and remained after photoactivation at 70% of that of the control sample. Concomitantly, the ratio between fluorescence intensities of PSI and PSII (F736/F681) at 120 K increased 1.5-fold upon chilling, and was fully reversed after photoactivation. Moreover, chilling stress seems to induce a decrease of the relative contribution of LHCII fluorescence to the thylakoid emission spectra at 120 K, and an increase of that from LHCI and PSI, correlated with a decrease of stability of LHCI-PSI and LHCII trimers, shown by mild-denaturing electrophoresis. These effects were reversed to a large extent after photoactivation, with the exception of LHCII, which remained partly in the aggregated form. In view of these data, it is likely that dark-chilling stress induces partial disassembly of CP complexes, not completely restorable upon photoactivation. These data are further supported by confocal laser scanning fluorescence microscopy, which showed that regular grana arrangement observed in chloroplasts isolated from control leaves was destroyed by dark-chilling stress, and was partially reconstructed after photoactivation. In line with this, Chl a fluorescence spectra of leaf discs demonstrated that dark-chilling caused a decrease of the quantum yield PSII photochemistry (Fv/Fm) by almost 40% in 5 days. Complete restoration of the photochemical activity of PSII required 9 h post-chilling photoactivation, while only 3 h were needed to reconstruct thylakoid membrane organization and chloroplast structure. The latter demonstrated that the long-term dark-chilled bean leaves started to suffer from photoinhibition after transfer to moderate irradiance and temperature conditions, delaying the recovery of PSII photochemistry, independently of photo-induced reconstruction of PSII complexes.  相似文献   

3.
Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment.  相似文献   

4.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

5.
Fully exposed, senescing leaves of Cornus sanguinea and Parthenocissus quinquefolia display during autumn considerable variation in both anthocyanin and chlorophyll (Chl) concentrations. They were used in this study to test the hypothesis that anthocyanins may have a photoprotective function against photosystem II (PSII) photoinhibitory damage. The hypothesis could not be confirmed with field sampled leaves since maximum photochemical efficiency (Fv/Fm) of PSII was negatively correlated to anthocyanin concentration and the possible effects of anthocyanins were also confounded by a decrease in Fv/Fm with Chl loss. However, after short-term laboratory photoinhibitory trials, the percent decrease of Fv/Fm was independent of Chl concentration. In this case, a slight alleviation of PSII damage with increasing anthocyanins was observed in P. quinquefolia, while a similar trend in C. sanguinea was not statistically significant. It is inferred that the assumed photoprotection, if addressed to PSII, may be of limited advantage and only under adverse environmental conditions.  相似文献   

6.
昆仑山前山牧场海拔较高, 策勒绿洲海拔相对较低, 两者生境差异较大。以昆仑山前山牧场和策勒绿洲边缘两种不同生境条件下生长的6种牧草: 冰草(Agropyron cristatum)、无芒雀麦(Bromus inermis)、矮生高羊茅(Festuca elata)、披碱草(Elymus dahuricus )、红豆草(Onobrychis pulchella)及和田大叶(Medicago sativa var. luxurians)为试验材料, 研究了不同生境条件下牧草叶片叶绿素含量及叶绿素荧光动力学参数的变化情况。结果显示: (1)在两种生境条件下, 昆仑山前山牧场生境生长的牧草叶绿素a、叶绿素b、总叶绿素的含量明显较高, 生长在策勒绿洲生境的牧草品种叶绿素a/b值较高; (2)昆仑山前山牧场生境牧草最大荧光、光系统II (PSII)最大光化学效率、PSII潜在活性和单位面积反应中心的数量的值明显高于策勒绿洲生境品种, 而初始荧光、单位反应中心吸收的光能、单位反应中心捕获的能量、单位反应中心耗散的能量、荧光诱导曲线初始斜率值则低于策勒绿洲生境品种。因此, 两种生境下环境因子发生了改变, 对牧草产生综合的胁迫作用; 策勒绿洲生境明显对牧草生长产生了抑制, 策勒绿洲生境牧草的色素含量降低以及PSII的机构遭到损坏, 导致反应中心一部分失活或裂解, 剩余有活性的反应中心的效率增加, 昆仑山生境则相对比较适宜牧草生长; 两种生境不同牧草叶绿素含量和叶绿素荧光参数的变化幅度不同。  相似文献   

7.
X. K. Yuan 《Photosynthetica》2016,54(3):475-477
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (?PSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ?PSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend.  相似文献   

8.
In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (PN), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, PN, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.  相似文献   

9.
Chlorophyll (Chl) fluorescence of warm day/cool night temperature exposed Phalaenopsis plants was measured hourly during 48 h to study the simultaneous temperature and irradiance response of the photosynthetic physiology. The daily pattern of fluorescence kinetics showed abrupt changes of photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of photosystem II electron transport (ΦPSII) upon transition from day to night and vice versa. During the day, the course of ΦPSII and NPQ was related to the air temperature pattern, while maximum quantum efficiency of PSII photochemistry (Fv/Fm) revealed a rather light dependent response. Information on these daily dynamics in fluorescence kinetics is important with respect to meaningful data collection and interpretation.  相似文献   

10.
Photoinhibition in outdoor cultures of Spirulina platensis was studied by measuring the polyphasic rise of chlorophyll fluorescence transients, which provide information on the primary photochemistry of PSII. The maximum efficiency of PSII photochemustry (Fv/Fm) declined in response to daily increasing irradiance and recovered as daily irradiance decreased. The greatest inhibition (15%) in Fv/Fm was observed at 12:00 hr which responded to the highest irradiance. The absorption flux, the trapping flux, and the electron transport flux per PSII reaction center increased in response to daily increasing irradiance and decreased as irradiance decreased. The daily change in the concentration of PSII reaction centers followed the same pattern as Fv/Fm. However, no significant changes in the probability of electron transport beyond QAo) were observed during the day. The results suggest that the decrease in Fv/Fm induced by photoinhibition in outdoor Spirulina cultures was a result of the inactivation of PSII reaction centers. The results also suggest that the measurement of polyphasic fluorescence transients is a powerful tool to study the mechanism of photoinhibition in outdoor Spirulina cultures and to screen strains for photoinhibition tolerance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this work, photosystem II (PSII) photochemistry, leaf water potential, and pigment contents of male and female Pistacia lentiscus L. were investigated during a seasonal cycle at three different, arid locations: superior semiarid, inferior semiarid, and arid. The results showed that the gender, season, and the site conditions interacted to influence the quantum yield and pigment contents in P. lentiscus. Predawn leaf water status was determined only by the site and season. The annual patterns of PSII maximum quantum efficiency (Fv/Fm) were characterized by a suboptimal activity during the winter, especially, populations with the more negative water potential exhibited a lower chlorophyll (Chl) a content and chronic photoinhibition irrespective of a gender. We also demonstrated that both photochemical or nonphotochemical mechanisms were involved to avoid the photoinhibition and both of them depended on the season. This plasticity of photosynthetic machinery was accompanied by changes in carotenoids and Chl balance. In the spring, the female Fv/Fm ratio was significantly higher than in male individuals, when the sexual dimorphism occurred during the fruiting stage, regardless of site conditions. P. lentiscus sex-ratio in Mediterranean areas, where precipitations exceeded 500 mm, was potentially female-biased. Among the fluorescence parameters investigated, nonphotochemical quenching coefficient appeared as the most useful one and a correlation was found between Chl a content and Fv/Fm. These results suggest that functional ecology studies would be possible on a large scale through light reflectance analysis.  相似文献   

12.
Photosynthesis, chlorophyll (Chl) fluorescence, and antioxidant enzymes were measured in the mulberry (Morus spp.) cultivars Da 10, Hongguo 2, Anza 1, and Taiwan 72C002, which were subjected to salinity and high-temperature stress (STS; 0.1%, 0.3%, and 0.5% NaCl concentrations, 34.5°C–40.5°C/27.8°C–29.2°C day/night temperatures). Control plants were watered with 1 L of full-strength Hoagland’s nutrient solution with no added NaCl. Net photosynthetic rate (P N), stomatal conductance (g s), and effective quantum yield of photosystem II photochemistry (ΦPSII) increased in Anza 1 and Taiwan 72C002 under 0.1% STS but decreased in Da 10 and Hongguo 2 compared with the control. However, all the above parameters, including Chl content, maximum quantum yield of photosystem II photochemistry (Fv/Fm), nonphotochemical quenching (NPQ), and maximum carboxylation velocity of Rubisco (V cmax, decreased in Taiwan 72C002, Honggua 2, and Da 10 under 0.3% and 0.5% STS, suggesting that photoinhibition occurred under severe STS. Under STS, there were no significant changes in P N, Fv/Fm, ΦPSII, ascorbate peroxidase (APX) activity, superoxide dismutase (SOD) activity, catalase activity, superoxide anion radical (O 2 ? ) content, malondialdehyde (MDA) content, soluble sugar content (SSC), and leaf biomass in Anza 1 even at 0.5% STS, showing that Anza 1 displays high resistance to STS. In addition, peroxidase activity was significantly higher in Anza 1 than in the other mulberry cultivars. Significant adverse effects of severe salinity on photosynthesis and Chl fluorescence parameters were observed in Da 10. Additionally, SOD, peroxidase, and APX activities were lower in Da 10, whereas O 2 ? and MDA contents were higher in comparison with the other mulberry cultivars under 0.3% and 0.5% STS, suggesting that Da 10 had low resistance to STS. These results show that 0.1% STS had a positive effect on photosynthesis and Chl fluorescence parameters in Anza 1 and Taiwan 72C002, and higher peroxidase activity can to a certain extent explain the higher STS tolerance in Anza 1. Damages to DSM photosystems might be related to lower SOD, POD, and APX activities, which resulted in the accumulation of reactive oxygen species.  相似文献   

13.
In a greenhouse experiment, the influence of arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices) and water stress [100% field capacity (FC), 75% FC, 50% FC and 25% FC] on maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm) and some other ecophysiological characteristics of two pistachio cultivar (Pistacia vera cv. Badami-Riz-Zarand and Pistacia vera cv. Qazvini) were investigated.  相似文献   

14.
The effect of salt concentration (NaCl) on growth, fluorescence, photosynthetic activities and pigment content of the cyanobacterium Arthrospira platensis has been investigated over 15 days. It has been observed that high NaCl concentration induces an increase of the growth, photosynthetic efficiency (α), phycobilin/chlorophyll ratio and a slight decrease of dark respiration and compensation points. Moreover, high NaCl concentration enhances photosystem II (PSII) activity compared to photosystem I (PSI). Results show that the phycobilin-PSII energy transfer compared to the chlorophyll-PSII (F695,600/F695,440) increases. However, data obtained about the maximal efficiency of PSII photochemistry are controversial. Indeed, the Fv/Fm ratio decreases in salt adapted cultures, while at the same time the trapping flux per PSII reaction center (TR0/RC) and the probability of electron transport beyond QA (0) remain unchanged at the level of the donor and the acceptor sites of PSII. This effect can be attributed to the interference of phycobilin fluorescence with Chl a when performing polyphasic transient measurements.  相似文献   

15.
We investigated the photosynthetic characteristics of Chorispora bungeana under conditions of drought stress caused by different concentrations of polyethylene glycol-6000 (PEG; 0, 5, 20, and 40%) and various concentrations of exogenous glycine (0, 5, 10, and 20 mM) with 20% PEG. We showed that moderate and severe drought stress of PEG reduced the chlorophyll (Chl) content (both Chl a and b), maximal quantum yield of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII in light (YII), and quantum yield of regulated energy dissipation (YNPQ), while Chl a/b and quantum yield of nonregulated energy dissipation (YNO) increased. The low and moderate drought stress increased Mg2+ and Fe3+ contents, while a decrease in Mg2+ and Fe3+ was found under severe drought stress. Compared to sole PEG stress, the addition of exogenous 10 mM glycine increased Chl, Mg2+ and Fe3+ contents, Fv/Fm, YII, and YNPQ, and reduced YNO. On the contrary, 20 mM glycine showed an opposite effect, except for YNO. Our results proved that Chl contents and fluorescence parameters are reliable indicators for drought tolerance of C. bungeana. We suggest that a proper glycine content can relieve the effect of drought stress on C. bungeana.  相似文献   

16.
In this study, the gas exchange, chlorophyll fluorescence, and antioxidant activity in eight tall fescue cultivars were investigated under aluminum stress. The results showed that the net photosynthetic rate (P N) and stomatal conductance (g s) were decreased, while the intercellular CO2 concentration (Ci) was stable or increased under Al stress conditions. The efficiency of excitation capture by open PSII reaction centers (Fv/Fm), the maximum quantum yield of PSII photochemistry (F v/F m), the quantum yield of PSII electron transport (ΦPSII), and the photochemical quenching (qP) were also decreased after Al stress, while the non-photochemical quenching (NPQ) was increased. Moreover, Al stress increased the antioxidant activities and MDA contents in each tall fescue cultivars. However, there was a lot genotype differences between the Al-tolerant and Al-sensitive cultivars. Cv. Barrington was the most sensitive cultivar and cv. Crossfire 2 was the most tolerant cultivar. The excessive excitation energy could not be dissipated efficiently by antenna pigments, and reactive oxygen species could not be scavenged efficiently, thereby resulting in membrane lipid peroxidation in cv. Barrington under Al stress conditions.  相似文献   

17.
The chlorophyll fluorescence parameter Fv/Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three‐tiered approach of phenotyping by Fv/Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North‐Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non‐significant under the given heat stress. This study validated that our three‐tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.  相似文献   

18.
It has been shown that the aba mutant of Arabidopsis thaliana (L.) Heynh. is impaired in epoxy-carotenoid biosynthesis and accumulates the epoxy-carotenoid precursor, zeaxanthin (C.D. Rock, J.A.D. Zeevaart [1991] Proc Natl Acad Sci USA 88: 7496-7499). In addition to providing conclusive evidence for the indirect pathway of abscisic acid biosynthesis from epoxy-carotenoids, the aba mutation offers a powerful means to study the function of xanthophylls (oxygenated carotenoids) in photosynthesis. We measured in vivo the chlorophyll (Chl) fluorescence parameters Fo (initial), Fm (maximum), Fv (variable = Fm − Fo), and t½ (half-rise time of fluorescence induction) of wild-type (WT) and three allelic aba mutants. The mutant genotypes had significantly lower Fo and Fm values relative to those of WT. The Fv/Fm ratio and t½, which are parameters affected by photochemical efficiency, photosystem II (PSII), and plastoquinone pool sizes, were similar in the aba alleles and WT. Because the aba genotypes accumulate high levels of zeaxanthin, which is involved in nonphotochemical quenching of Chl fluorescence, we propose that the reduced fluorescence yields in the aba genotypes are a consequence of the accumulated zeaxanthin. Measurement of PSII oxygen evolution rates in isolated thylakoid membranes of WT and aba-4 confirmed that quantum efficiency was not altered in aba-4 but indicated that the mutant had reduced PSII activity in vitro. Electron microscopy revealed an abnormal chloroplast ultrastructure in the aba plants: the mutants had significantly fewer thylakoid lamellae per granum stack but significantly more grana per chloroplast, as well as more chloroplasts per cell than WT. Immunoblot analysis established that aba-4 had normal levels of the Chl a/b-binding core polypeptide of PSII (CP29) and the PSII light-harvesting Chl a/b-binding complex. These results provide evidence for the role of zeaxanthin in nonphotochemical fluorescence quenching and suggest involvement of epoxy-carotenoids and/or zeaxanthin in thylakoid stacking and PSII activity.  相似文献   

19.
The photosynthetic activity of two Syrian barley landraces, Arabi (A.) Aswad and A. Abiad, grown under 120 mM NaCl, was studied, using gas exchange and chlorophyll (Chl) a fluorescence transient (OJIP) measurements. Salt treatment of barley seedlings decreased both the rates of photosynthesis and photosystem II (PSII) activity, as evaluated from chlorophyll fluorescence data. However, the noted decrease was dependent on the duration of the salt treatment and the barley cultivar. Several parameters (e.g., light absorption flux per cross section of leaf; time to reach maximum chlorophyll a fluorescence intensity; plastoquinone pool size; yield of heat loss; rate of reaction center closure; and the so-called Performance Index), calculated and inferred from Chl fluorescence measurements, and related to PSII activity, were affected after 24 h of salt application, but these changes were much more pronounced after 7 days of salt treatment. Similar changes were found for measured gas exchange parameters: CO2 uptake (photosynthetic) rate and stomatal conductance. The photosynthetic apparatus of the cultivar variety (c.v.) Arabi Aswad was found to be much more tolerant to salt treatment, compared with c.v. Arabi Abiad. After 7 days of salt treatment, the latter showed a very high value of the initial (minimal) fluorescence (Fo) and then essentially almost flat fluorescence transient curve; this result may be due to several causes that include structural changes as well as changes in the rate constants of different dissipative processes. The parameters that were most affected, by salt treatment, were: the time needed to reach the maximal chlorophyll fluorescence (Fm), and the inferred oxygen evolving complex activity (Fv/Fo, where Fv, is Fm  Fo), and the calculated Performance Index (PIABS) that depends on the efficiency and the yield of energy transfer and primary photochemistry. We suggest that the early reactions of the photosynthetic apparatus of barley plants could play a key role in their tolerance to salt stress. Further, we found that the first stage of salinity effect on photosynthesis of barley plants is related to stomatal conductance limitation rather than to PSII activity reduction. Thus, on the basis of our results on the two barley landraces, we recommend the use of a combination of gas exchange measurements along with the analysis of the OJIP fluorescence transient for the detection of salt stress-induced changes in plants.  相似文献   

20.
After seven weeks of a combined magnesium and sulphur deficiency, spinach (Spinacea oleracea L.) plants showed a substantial accumulation of inactivated photosystem II (PSII) centres as indicated by a 40% decrease of the chlorophyll (Chl) fluorescence parameter Fv/Fm (Fv being the yield of variable fluorescence and Fm the yield of maximal fluorescence when all reaction centres are closed) together with a severe loss of leaf Chl content of 75%. The responses of the photosynthetic apparatus were examined when the deficient plants were transferred back to a rich nutrient medium. During the first 24 h of the recovery phase, thylakoid protein synthesis measured as incorporation of [14C]leucine per unit of Chl increased substantially. The synthesis rate of the D1 reaction-centre polypeptide of PSII, which in the deficient plants was reduced to 50% of the non-deficient control, was stimulated eight- to ninefold. D1-protein content, which in the deficient plants was reduced to 40% of the non-deficient control, started to increase 2 d later. Thus, D1-protein degradation was also enhanced. The increased D1-protein turnover led to a rapid repair of the existing PSII centres as indicated by the rise of Fv/Fm. It was completed at day 7 of the recovery phase. At day 2 of the recovery phase, the synthesis of other thylakoid proteins such as the D2 protein, cytochrome b 559, CP 47 and the 33-kDa polypeptide of the water-splitting system, became stimulated. This process resulted in an accumulation of new PSII centres. During the first week, formation of new PSII centres was not associated with an increase in leaf Chl content. The Chl content of the recovering leaves only started to increase when the ratio of PSII polypeptides versus LHCII (light-harvesting complex of PSII), which was substantially diminished in the deficient plants, became comparable to that of the control. The recovery process was accompanied by substantial changes in thylakoid protein phosphorylation. Their relevance to thylakoid protein turnover and stability is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed (after a saturating flash) under steady-state conditions - Fv yield of variable fluorescence, (difference between Foand Fm) - F yield of variable fluorescence under steady state conditions - LHC light-harvesting complex - PQ plastoquinone - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qP photochemical quenching - qn non-photochemical quenching The authors like to thank Dipl. Biol. Britta Untereiser for determining the chlorophyll fluorescence quenching factors. This work was supported by grants from the Bundesminister für Forschung und Technologie, the Project Europäisches Forschungszentrum and the German Israeli Foundation in cooperation with Prof. I. Ohad, Hebrew University, Jerusalem, Israel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号