首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of substrate and product on the growth of Klebsiella pneumoniae in anaerobic and aerobic batch fermentation for the production of 1,3-propanediol was studied. The cells under anaerobic conditions had a higher maximum specific growth rate of 0.19 h–1 and lower tolerance to 110 g glycerol l–1, compared to the maximum specific growth rate of 0.17 h–1 and tolerance to 133 g glycerol l–1 under aerobic conditions. Acetate was the main inhibitory metabolite during the fermentation under anaerobic conditions, with lactate and ethanol the next most inhibitory. The critical concentrations of acetate, lactate and ethanol were assessed to be 15, 19, 26 g l–1, respectively. However, cells grown under aerobic conditions were more resistant to acetate and lactate but less resistant to ethanol. The critical concentrations of acetate, lactate and ethanol were assessed to be 24, 26, and 17 g l–1, respectivelyRevisions requested 8 september; Revisions received 2 November 2004  相似文献   

2.
A defined medium with glucose as the carbon source was used to quantitatively determine the metabolic end products produced by Listeria monocytogenes under aerobic and anaerobic conditions. Of 10 strains tested, all produced acetoin under aerobic conditions but not anaerobic conditions. Percent carbon recoveries of end products, typified by strain F5069, were as follows: lactate, 28%; acetate, 23%; and acetoin, 26% for aerobic growth and lactate, 79%; acetate, 2%; formate, 5.4%; ethanol, 7.8%; and carbon dioxide, 2.3% for anaerobic growth. No attempt to determine carbon dioxide under aerobic growth conditions was made. The possibility of using acetoin production to assay for growth of L. monocytogenes under defined conditions should be considered.  相似文献   

3.
H2-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates,Aeromonas spp. (7 strains),Pseudomonas spp. (3 strains), andVibrio spp. (5 strains); from anaerobic isolates,Actinomyces spp. (11 strains),Clostridium spp. (7 strains), andPorphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H2 production yield in the batch cultivations after 12h (2.24–2.74 OD at 600 nm and 1.02–1.22 mol H2/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H2 producers in an anaerobic granular sludge exist in large proportions and their performance in terms of H2 production is quite similar.  相似文献   

4.
For a relaxed (rel-), protease producing (A-type) and a stringent (rel+), not-protease producing (B-type) variant of Bacillus licheniformis we determined fermentation patterns and products, growth parameters and alkaline protease-production (if any) in anaerobic, glucose-grown chemostats and batch-cultures. Glucose is dissimilated via glycolysis and oxidative pentose phosphate pathway simultaneously; the relative share of these two routes depends on growth phase (in batch) and specific growth rate (in chemostat). Predominant products are lactate, glycerol and acetaldehyde for A-type batches and acetaldehyde, ethanol, acetate and lactate for B-type batches. Both types show a considerable acetaldehyde production. In chemostat cultures, the fermentation products resemble those in batch-culture. From the anaerobic batches and chemostats, we conclude that the A-type (with low ATP-yield) will have a YATPmax of probably 12.9 g/mol and the B-type (with high ATP-yield) a YATPmax of about 10.1 g/mol. For batch-cultures, both types have about the same, high Yglucose (12 g/mol). So, the slow-growing A-type has a relatively high efficiency of anaerobic growth (i.e. an efficient use of ATP) and the fast-growing B-type a relatively low efficiency of anaerobic growth. In aerobic batch-cultures, we found 48, respectively 41% glucose-carbon conversion into mainly glycerol and pyruvate, respectively acetate as overflow metabolites in the A- and B-type. In both aerobic and anaerobic batch-cultures of the A-type, protease is produced predominantly in the logarithmic and early stationary phase, while a low but steady production is maintained in the stationary phase. Protease production occurs via de novo synthesis; up to 10% of the total protease in a culture is present in a cell-associated form. Although anaerobic protease production (expressed as protease per amount of biomass) is much higher than for aerobic conditions, specific rates of production are in the same range as for aerobic conditions while, most important, the substrate costs of anaerobic production are very much higher than for aerobic conditions.  相似文献   

5.
Based on requirements for acetate or lipoic acid for aerobic (but not anaerobic) growth, Lactococcus lactis subsp. lactis mutants with impaired pyruvate catabolism were isolated following classical mutagenesis. Strains with defects in one or two of the enzymes, pyruvate formate-lyase (PFL), lactate dehydrogenase (LDH) and the pyruvate dehydrogenase complex (PDHC) were obtained. Growth and product formation of these strains were characterized. A PFL-defective strain (requiring acetate for anaerobic growth) displayed a two-fold increase in specific lactate production compared with the corresponding wild-type strain when grown anaerobically. LDH defective strains directed 91-96% of the pyruvate towards alpha-acetolactate, acetoin and diacetyl production when grown aerobically in the presence of acetate and absence of lipoic acid (a similar characteristic was observed in an LDH and PDHC defective strain in the presence of both acetate and lipoic acid) and more than 65% towards formate, acetate and ethanol production under anaerobic conditions. Another strain with defective PFL and LDH was strictly aerobic. However, a variant with strongly enhanced diacetyl reductase activities (NADH/NAD+ dependent diacetyl reductase, acetoin reductase and butanediol dehydrogenase activities) was selected from this strain under anaerobic conditions by supplementing the medium with acetoin. This strain is strictly aerobic, unless supplied with acetoin.  相似文献   

6.
In the yeast Dipodascus magnusii, which is auxotrophic for thiamine and biotin, during cultivation on glucose with excessive thiamine concentration, pyruvate metabolism was shown to result in the synthesis of fermentation products, namely, ethanol and, to a lesser extent, lactate. Substantial synthesis of ethyl acetate was also observed under these conditions. Introduction of nicotinic acid (NA) into the medium resulted in time separation of ethanol and lactate production. It was shown that cultivation of the yeast under biotin deficiency resulted in nearly complete suppression of aerobic production of ethanol and cessation of ethyl acetate synthesis, whereas lactate synthesis was activated as early as in the first hours of cultivation. Upon introduction of NA under these conditions, lactate concentration sharply increased. These results show that the combination of thiamine and biotin with other vitamins can stimulate utilization of the pyruvate pool in yeasts towards formation of considerable amounts of lactate, which is typical only of cells of higher eukaryotes and bacteria.  相似文献   

7.
A new hydrogen producing bacterium, Rhodopseudomonas palustris P4, originally isolated under an anaerobic/phototrophic condition, grew well under aerobic/chemoheterotrophic or anaerobic/chemoheterotrophic conditions and showed CO-dependent, H2 production activity when transferred to anaerobic conditions. Cell growth was best under an aerobic/chemoheterotrophic condition as the doubling time of 1 h, while the H2 production activity was highest in the cells grown under an aerobic/chemoheterotrophic condition at 20 mmol g–1 cell–1 h–1.  相似文献   

8.
Summary Candida tropicalis converts xylose to ethanol under aerobic, but not anaerobic, conditions. Ethanol production lags behind growth and is accelerated by increased aeration. Adding xylose to active cultures stimulates ethanol production as does serial subculture in a medium containing xylose as a sole carbon source.Maintained in cooperation with the University of Wisconsin, Madison, Wis.  相似文献   

9.
Mutants of Escherichia coli which overproduce alcohol dehydrogenase were obtained by selection for the ability to use ethanol as an acetate source in a strain auxotrophic for acetate. A mutant having a 20-fold overproduction of alcohol dehydrogenase was able to use ethanol only to fulfill its acetate requirement, whereas two mutants with a 60-fold overproduction were able to use ethanol as a sole carbon source. The latter two mutants produced only 25% of the wild-type level of nitrate reductase, when grown under anaerobic conditions. Alcohol dehydrogenase production was largely unaffected by catabolite repression but was repressed by nitrate under both aerobic and anaerobic conditions. The genetic locus responsible for alcohol dehydrogenase overproduction was located at min 27 on the E. coli genetic map; the gene order, as determined by transduction, was trp tonB adh chlC hemA. The possible relationship of alcohol dehydrogenase to anaerobic redox systems such as formate-nitrate reductase is discussed.  相似文献   

10.
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80–90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.  相似文献   

11.
Summary In comparison with intact yeast, dehydrated-rehydrated cells of Saccharomyces cerevisiae show significantly higher ethanol production from exogenous substrate under both anaerobic and aerobic conditions, particularly when low concentration (0.1%) of glucose are used. For populations with a higher percentage of viable rehydrated cells (above 70%) a more notable decrease in the Pasteur effect (the difference between the quantity of ethanol formed under anaerobic and aerobic conditions) is observed.  相似文献   

12.
We investigated the regulation of the central aerobic and hypoxic metabolism of the biocontrol and non-Saccharomyces wine yeast Pichia anomala. In aerobic batch culture, P. anomala grows in the respiratory mode with a high biomass yield (0.59 g [dry weight] of cells g of glucose(-1)) and marginal ethanol, glycerol, acetate, and ethyl acetate production. Oxygen limitation, but not glucose pulse, induced fermentation with substantial ethanol production and 10-fold-increased ethyl acetate production. Despite low or absent ethanol formation, the activities of pyruvate decarboxylase and alcohol dehydrogenase were high during aerobic growth on glucose or succinate. No activation of these enzyme activities was observed after a glucose pulse. However, after the shift to oxygen limitation, both enzymes were activated threefold. Metabolic flux analysis revealed that the tricarboxylic acid pathway operates as a cycle during aerobic batch culture and as a two-branched pathway under oxygen limitation. Glucose catabolism through the pentose phosphate pathway was lower during oxygen limitation than under aerobic growth. Overall, our results demonstrate that P. anomala exhibits a Pasteur effect and not a Crabtree effect, i.e., oxygen availability, but not glucose concentration, is the main stimulus for the regulation of the central carbon metabolism.  相似文献   

13.
We investigated the regulation of the central aerobic and hypoxic metabolism of the biocontrol and non-Saccharomyces wine yeast Pichia anomala. In aerobic batch culture, P. anomala grows in the respiratory mode with a high biomass yield (0.59 g [dry weight] of cells g of glucose−1) and marginal ethanol, glycerol, acetate, and ethyl acetate production. Oxygen limitation, but not glucose pulse, induced fermentation with substantial ethanol production and 10-fold-increased ethyl acetate production. Despite low or absent ethanol formation, the activities of pyruvate decarboxylase and alcohol dehydrogenase were high during aerobic growth on glucose or succinate. No activation of these enzyme activities was observed after a glucose pulse. However, after the shift to oxygen limitation, both enzymes were activated threefold. Metabolic flux analysis revealed that the tricarboxylic acid pathway operates as a cycle during aerobic batch culture and as a two-branched pathway under oxygen limitation. Glucose catabolism through the pentose phosphate pathway was lower during oxygen limitation than under aerobic growth. Overall, our results demonstrate that P. anomala exhibits a Pasteur effect and not a Crabtree effect, i.e., oxygen availability, but not glucose concentration, is the main stimulus for the regulation of the central carbon metabolism.  相似文献   

14.
The filamentous fungus Fusarium oxysporum is known for its ability to produce ethanol by simultaneous saccharification and fermentation (SSF) of cellulose. However, the conversion rate is low and significant amounts of acetic acid are produced as a by-product. In this study, the growth characteristics of F. oxysporum were evaluated in a minimal medium using glucose as the sole carbon source in aerobic, anaerobic and oxygen-limited batch cultivations. Under aerobic conditions the maximum specific growth rate was found to be 0.043 h(-1), and the highest ethanol yield (1.66 mol/mol) was found under anaerobic conditions. During the different phases of the cultivations, the intracellular profiles were determined under aerobic and anaerobic conditions. The profiles of the phosphorylated intermediates indicated that there was a high glycolytic flux at anaerobic growth conditions, characterized by high efflux of glyceraldehyde-3-phosphate (G3P) and fructose-6-phosphate (F6P) from the pentose phosphate pathway (PPP) to the Embden-Meyerhof-Parnas (EMP) pathway, resulting in the highest ethanol production under these conditions. The amino acid profile clearly suggests that the TCA cycle was primarily active under aerobic cultivation. On the other hand, the presence of high levels of gamma-amino-n-butyric acid (GABA) under anaerobic conditions suggests a functional GABA bypass and a possible block in the TCA cycle at these conditions.  相似文献   

15.
Four photosynthetic bacteria, isolated from 14 samples taken from seafood processing plants, were identified as species of Rhodocyclus gelatinosus, belonging to the purple, non-sulphur bacteria of the family Rhodospirillaceae. Cultivation in synthetic medium under four different conditions indicated that all four strains gave maximum carotenoid and bacteriochlorophyll synthesis under anaerobic conditions in the light, with values of 11 to 12.6 and 102 to 108 mg/g dry cell wt, respectively. These values are 87% higher than the pigment content obtained from aerobic cultivation, although the cell biomass of all strains (1.7 to 2.3 g/l) was 22 to 38% higher under aerobic conditions. Protein content was always between 32 and 43%. The specific growth rates of all isolates in aerobic cultivation (0.04 to 0.06 h-1) were twice those in anaerobic conditions in the light. No growth occurred in anaerobic conditions in the dark.  相似文献   

16.
Abstract The enzymes implicated in ethyl acetate synthesis and the catabolism of ethanol by Kluyveromyces fragilis were investigated under varying growth conditions. The culture was grown continuously to D = 0.25 h−1 on diluted whey permeate. The results showed that ethyl acetate synthesis by Kluyveromyces fragilis is catalysed by both an esterase and an alcohol acetyltransferase. The esterase is a constitutive enzyme, while alcohol acetyltransferase is inducible. The catabolism of ethanol by Kluyveromyces fragilis resulted in production of ethyl acetate, acetate and acetaldehyde. The glyoxylic shunt is totally inactive in these conditions. The production of acetaldehyde is only governed by an alcohol dehydrogenase.  相似文献   

17.
18.

Background

For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work was to combine inhibitor degradation, xylitol fermentation, and ethanol production using a single yeast strain.

Results

A new process of integrated aerobic xylitol production and anaerobic ethanol fermentation using non-detoxified acid pretreated corncob by Candida tropicalis W103 was proposed. C. tropicalis W103 is able to degrade acetate, furfural, and 5-hydromethylfurfural and metabolite xylose to xylitol under aerobic conditions, and the aerobic fermentation residue was used as the substrate for ethanol production by anaerobic simultaneous saccharification and fermentation. With 20% substrate loading, furfural and 5-hydroxymethylfurfural were degraded totally after 60 h aerobic incubation. A maximal xylitol concentration of 17.1 g l-1 was obtained with a yield of 0.32 g g-1 xylose. Then under anaerobic conditions with the addition of cellulase, 25.3 g l-1 ethanol was produced after 72 h anaerobic fermentation, corresponding to 82% of the theoretical yield.

Conclusions

Xylitol and ethanol were produced in Candida tropicalis W103 using dual-phase fermentations, which comprise a changing from aerobic conditions (inhibitor degradation and xylitol production) to anaerobic simultaneous saccharification and ethanol fermentation. This is the first report of integrated xylitol and ethanol production from non-detoxified acid pretreated corncob using a single microorganism.
  相似文献   

19.
During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation. However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect of overexpressing the native NADH kinase (encoded by the POS5 gene) in xylose-consuming recombinant S. cerevisiae directed either into the cytosol or to the mitochondria was evaluated. The physiology of the NADH kinase containing strains was also evaluated during growth on glucose. Overexpressing NADH kinase in the cytosol redirected carbon flow from CO2 to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol. In contrast, overexpressing NADH kinase in the mitochondria did not affect the physiology to a large extent. Overall, although NADH kinase did not increase the rate of xylose consumption, we believe that it can provide an important source of NADPH in yeast, which can be useful for metabolic engineering strategies where the redox fluxes are manipulated.  相似文献   

20.
Aspergillus niger hyphae were found to grow with unliquefied potato starch under aerobic conditions, but did not grow under anaerobic conditions. The raw culture ofA. niger catalyzed saccharification of potato starch to glucose, producing approximately 12 g glucose/L/day/ The extracellular enzyme activity was decreased in proportion to incubation time, and approximately 64% of initial activity was maintained after 3 days. At 50°C,A. niger hyphae growth stopped, while the extracellular enzyme activity peaked. On the basis of theA. niger growth property and enzyme activity, we designed a serial bioreactor system composed of four different reactors. Fungal hyphae were cultivated in reactor I at 30°C, uniquefied starch was saccharified to glycose by a fungal hyphae culture in reactors II and III at 50°C, and glucose was fermented to ethanol bySaccharomyces cerevisiae in reactor IV. The total glucose produced by fungal hyphae in reactor I and saccharification in reactor II was about 42 g/L/day. Ethanol production in reactor IV was approximately 22 g/L/day, which corresponds to about 79% of the theoretical maximum produced from 55 g starch/L/day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号