共查询到20条相似文献,搜索用时 15 毫秒
1.
A derivative of Bacillus thuringiensis subsp. kurstaki (HD-1) formed parasporal inclusions at 25 degrees C, but not at 32 degrees C. This strain differed from the parent only in the loss of a 110-megadalton (Md) plasmid, but plasmid and chromosomal copies of protoxin genes were present in both strains. On the basis of temperature shift experiments, the sensitive period appeared to be during midexponential growth, long before the time of protoxin synthesis at 3 to 4 h after the end of exponential growth. The conditional phenotype could be transferred by cell mating to naturally acrystalliferous Bacillus cereus. In all such cases, a 29-Md protoxin -encoding plasmid was transferred, but this plasmid alone was barely sufficient for protoxin synthesis. Protoxin production increased to detectable levels, but well below those of the parental donor strain, by simultaneous transfer of a 44-Md protoxin -encoding plasmid. Transfer of a 5-Md plasmid with the two larger protoxin -coding plasmids resulted in a protoxin synthesis level approaching that of the donor strain. A role for some of the cryptic plasmids of kurstaki in parasporal body formation was implied. In contrast, a closely related B. thuringiensis strain, HD73 , produced crystals at both 25 and 32 degrees C even when the capacity was transferred on a 50-Md plasmid to B. cereus. The amount of protoxin produced in these B. cereus transcipients , however, was somewhat less than that produced in the parental strain HD73 , implying that catabolic differences, gene dosage, or the presence of a chromosomal gene (or a combination of these) may be necessary for maximum production. A regulatory component of the 29-Md plasmid appeared to be trans-acting and dominant since B. cereus transcipients containing the 29-Md plasmid from kurstaki and the 50-Md plasmid from HD73 produced more protoxin at 25 degrees C than at 30 degrees C. Similar results were obtained when protoxin synthetic capacity was transferred from B. thuringiensis subsp. israelensis to the conditional B. thuringiensis subsp. kurstaki strain. 相似文献
2.
Arthur I. Aronson 《FEMS microbiology letters》1994,117(1):21-27
3.
4.
The conversion of delta-endoprotoxins of Bacillus thuringiensis to active toxins is mediated by trypsin, insect gut (exogenous) and bacterial (endogenous) proteases. The biochemical aspects of exogenous and endogenous proteases involved in the conversion of protoxin to toxin are reviewed. Perhaps, these proteases also play a role in influencing the host range of toxin and in the development of resistance to toxin. 相似文献
5.
Two isolates of Bacillus thuringiensis subsp. kurstaki were examined which produced different levels of intracellular proteases. Although the crystals from both strains had comparable toxicity, one of the strains, LB1, had a strong polypeptide band at 68,000 molecular weight in the protein from the crystal; in the other, HD251, no such band was evident. When the intracellular proteases in both strains were measured, strain HD251 produced less than 10% of the proteolytic activity found in LB1. These proteases were primarily neutral metalloproteases, although low levels of other proteases were detected. In LB1, the synthesis of protease increased as the cells began to sporulate; however, in HD251, protease activity appeared much later in the sporulation cycle. The protease activity in strain LB1 was very high when the cells were making crystal toxin, whereas in HD251 reduced proteolytic activity was present during crystal toxin synthesis. The insecticidal toxin (molecular weight, 68,000) from both strains could be prepared by cleaving the protoxin (molecular weight, 135,000) with trypsin, followed by ion-exchange chromatography. The procedure described gave quantitative recovery of toxic activity, and approximately half of the total protein was recovered. Calculations show that these results correspond to stoichiometric conversion of protoxin to insecticidal toxin. The toxicities of whole crystals, soluble crystal protein, and purified toxin from both strains were comparable. 相似文献
6.
Protease activation of the entomocidal protoxin of Bacillus thuringiensis subsp. kurstaki. 总被引:1,自引:6,他引:1 下载免费PDF全文
Two isolates of Bacillus thuringiensis subsp. kurstaki were examined which produced different levels of intracellular proteases. Although the crystals from both strains had comparable toxicity, one of the strains, LB1, had a strong polypeptide band at 68,000 molecular weight in the protein from the crystal; in the other, HD251, no such band was evident. When the intracellular proteases in both strains were measured, strain HD251 produced less than 10% of the proteolytic activity found in LB1. These proteases were primarily neutral metalloproteases, although low levels of other proteases were detected. In LB1, the synthesis of protease increased as the cells began to sporulate; however, in HD251, protease activity appeared much later in the sporulation cycle. The protease activity in strain LB1 was very high when the cells were making crystal toxin, whereas in HD251 reduced proteolytic activity was present during crystal toxin synthesis. The insecticidal toxin (molecular weight, 68,000) from both strains could be prepared by cleaving the protoxin (molecular weight, 135,000) with trypsin, followed by ion-exchange chromatography. The procedure described gave quantitative recovery of toxic activity, and approximately half of the total protein was recovered. Calculations show that these results correspond to stoichiometric conversion of protoxin to insecticidal toxin. The toxicities of whole crystals, soluble crystal protein, and purified toxin from both strains were comparable. 相似文献
7.
N Banerjee-Bhatnagar 《Biochemical and biophysical research communications》1999,262(2):359-364
The role of nutritional factors during CryIVA protoxin expression in Bacillus thuringiensis israelensis (Bti) has been investigated. Inorganic phosphate (Pi) was found to stimulate 135 kD protoxin synthesis by Bti cells. There was a corresponding increase in the cryIVA specific mRNA in the presence of Pi. Inorganic phosphate inhibited HPr kinase but activated HPr phosphatase, the two enzymes responsible for regulating the concentration of phosphorylated HPr in the cell. Addition of protein phosphatase inhibitors NaF and calyculin A during resuspension resulted in the inhibition of toxin synthesis by Bti cells. Calyculin A inhibited HPr phosphatase activity in the in vitro assay also. The concentration of phosphorylated HPr was upregulated when the cells were resuspended in the presence of calyculin A, while the levels of the same were lowered in the presence of Pi, as determined by Western blotting the respective cells. The efficiency of sporulation of Bti was not affected when Pi was added alone or along with the phosphatase inhibitor calyculin A. 相似文献
8.
Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. 总被引:8,自引:1,他引:8 下载免费PDF全文
Two different 30-nucleotide regions of the cryIAc insecticidal protoxin gene from Bacillus thuringiensis were randomly mutagenized. One region was within one of seven amphipathic helices believed to be important for the formation of ion channels. There was no loss of toxicity for three test insects by any of 27 mutants, a result similar to that obtained previously for mutations within another such helix. Only mutations within a region encoding the central helix have resulted in a substantial number of mutants with low or no toxicity. A second mutagenized region encodes amino acids which are unique to this toxin and are within one of the loops in a portion of the toxin important for specificity. Among 21 different mutations of these 10 residues, only changes of two adjacent serine residues resulted in decreased toxicity which was greater for Manduca sexta than for Heliothis virescens larvae. These mutant toxins bound poorly to the single M. sexta CryIAc vesicle-binding protein and to several of the multiple H. virescens-binding proteins. The loop containing these serines must be involved in the formation of a specific toxin recognition domain. 相似文献
9.
The protoxin composition of Bacillus thuringiensis insecticidal inclusions affects solubility and toxicity. 总被引:1,自引:0,他引:1 下载免费PDF全文
A Aronson 《Applied microbiology》1995,61(11):4057-4060
Most Bacillus thuringiensis strains producing toxins active on lepidoptera contain several plasmid-encoded delta-endotoxin genes and package related protoxins into a single inclusion. It was previously found that in B. thuringiensis subsp. aizawai HD133, which produces an inclusion comprising the CryIAb, CryIC, and CryID protoxins, there is a spontaneous loss in about 1% of the cells of a 45-mDa plasmid containing the cryIAb gene. As a result, inclusions produced by the cured strain were less readily solubilized at pH 9.2 or 9.5 and had a decreased toxicity for Plodia interpunctella, despite the presence of the CryIC protoxin, which was active when solubilized. These results suggested that protoxin composition was a factor in inclusion solubility and toxicity and that the cryIAb gene, which is also present on an unstable plasmid in several other subspecies, may have a unique role in inclusion solubility and toxicity. Introduction of a cloned copy of this gene into the plasmid-cured derivative of B. thuringiensis subsp. aizawai HD133 resulted in an increase in the solubility at pH 9.2 of all of the inclusion proteins from less than 20% to greater than 45% and a lowering of the 50% lethal concentration (LC50, in micrograms [dry weight] per square centimeter) of inclusions for Spodoptera frugiperda from 35 to 10. These values are the same as those found with inclusions from B. thuringiensis subsp. aizawai HD133, and in all cases, the LC50 of the solubilized protoxins was 10. Transformants containing related cryIA genes produced inclusions which were more than 95% solubilized at pH 9.2 but also had LC50 of 10.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
The equilibrium adsorption and binding of the delta-endotoxin proteins, i.e., the protoxins (Mr=132 kDa) and toxins (Mr=66 kDa), fromBacillus thuringiensis subsp.kurstaki were greater on montmorillonite than on kaolinite (five-fold more protoxin and three-fold more toxin were adsorbed on montmorillonite). Approximately two- to three-fold more toxin than protoxin was adsorbed on these clay minerals. Maximum adsorption occurred within 30 min (the shortest interval measured), and adsorption was not significantly affected by temperatures between 7° and 50°C. The proteins were more easily desorbed from kaolinite than from montmorillonite; they could not be desorbed from montmorillonite with water or 0.2% Na2CO3, but they could be removed with Tris-SDS (sodium dodecyl sulfate) buffer. Adsorption was higher at low pH and decreased as the pH increased. Adsorption on kaolinite was also dependent on the ionic nature of the buffers. The molecular mass of the proteins was unaltered after adsorption on montmorillonite, as shown by SDS-PAGE (polyacrylamide gel electrophoresis) of the desorbed proteins; no significant modifications occurred in their structure as the result of binding on the clay, as indicated by infrared analysis; and there was no significant expansion of the clay by the proteins, as shown by x-ray diffraction analysis. The bound proteins appeared to retain their insecticidal activity against the third instar larvae ofTrichoplusia ni. 相似文献
11.
B H Knowles P J White C N Nicholls D J Ellar 《Proceedings. Biological sciences / The Royal Society》1992,248(1321):1-7
Bacillus thuringiensis (Bt) var. kyushuensis synthesizes a mosquitocidal crystalline inclusion containing several proteins ranging from 140 to 14 kDa. We have identified a 25 kDa protein protoxin in this inclusion which is not cytolytic, but when activated proteolytically to 23-22 kDa products is cytolytic to mosquito, lepidopteran and mammalian cells, can release entrapped glucose from liposomes and forms cation-selective channels in a planar lipid bilayer. This broad-spectrum cytolytic toxin is related antigenically to the 23 kDa toxin from Bt var. darmstadiensis strain 73-E10-2, but not to the 25 kDa CytA toxin of Bt var. israelensis. The cytolytic activity of these Bt var. kyushuensis toxins, like that of the latter two toxins, can be neutralized by incubation with liposomes containing phospholipids. 相似文献
12.
Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. 总被引:6,自引:0,他引:6
We report a simple three-step method of generating a homogeneous toxic fragment (toxin) in high yield from B. thuringiensis var. kurstaki. Purified crystals were digested with trypsin at pH 10.5, followed by (NH4)2SO4 precipitation and dialysis. For the HD73 strain the preparation is toxic to eastern-spruce-budworm (Choristoneura fuminiferana) larvae. It gives a single 66 kDa band on polyacrylamide-gel electrophoresis and a single band with an isoelectric point of 5.5 on an isoelectric-focusing gel. A single isoleucine N-terminus was detected, and the first 20 amino acids were found to be identical with those predicted from the gene nucleotide sequence. A single lysine C-terminus was detected, and the amino acid composition was in excellent agreement with tryptic cleavages at arginine-28 and lysine-623 of the protoxin. Raman spectroscopic analysis gave values of 20% alpha-helix, 35% beta-sheet and 45% unordered structure. The resistance of the toxin to most proteinases and its susceptibility to proteolysis by papain and Pronases indicates a compact multidomain structure. 相似文献
13.
Xueyong Zhou Wei Qi Jianbo Zhang Tingting Zou Chen Guo 《Biocontrol Science and Technology》2010,20(8):841-852
Effects of minerals on the conformational changes of protoxin isolated from Bacillus thuringiensis were investigated by circular dichroism and fluorescence spectroscopy. Contact of the protoxin with attapulgite, montmorillonite and kaolinite for 3 h resulted in no significant changes in the spectra of circular dichroism and a slight decrease in the fluorescence intensity. There were significant changes in spectra of circular dichroism of protoxin after desorption in comparison to the native protoxin. The fluorescence intensity of protoxins desorbed from minerals retained 77.5, 63.7 and 60.4% of intensity of native protoxin, respectively. The influential extent of desorption on the secondary structure was higher than that of contact. 相似文献
14.
Amino sugars in the glycoprotein toxin from Bacillus thuringiensis subsp. israelensis. 总被引:3,自引:2,他引:3 下载免费PDF全文
The carbohydrate content of purified Bacillus thuriniensis subsp. israelensis crystal toxin was determined by six biochemical tests, column chromatography on an amino acid analyzer, and the binding of 11 fluorescent lectins. The crystals contained approximately 1.0% neutral sugars and 1.7% amino sugars. The amino sugars consisted of 70% glucosamine and 30% galactosamine. No N-acetylneuraminic acid (sialic acid) was detected. The presence of amino sugars was confirmed by the strong binding of fluorescent wheat germ agglutinin and the weak binding of fluorescent soybean agglutinin. These lectins recognize N-acetyl-D-glucosamine and N-acetyl-D-galactosamine, respectively. The lectin-binding sites appeared evenly distributed among the protein subunits of the crystal. The sugars were covalently attached to the crystal toxin because wheat germ agglutinin still bound alkali-solubilized toxin which had been boiled in sodium dodecyl sulfate, separate by polyacrylamide gel electrophoresis, and transferred to nitrocellulose membranes. This study demonstrates the covalent attachment of amino sugars and indicates that the B. thuringiensis subsp. israelensis protein toxins should be viewed as glycoprotein toxins. The crystals used in the present study were purified on sodium bromide density gradients. Studies employing crystals purified on Renografin density gradients can give artificially high values for the anthrone test for neutral sugars. 相似文献
15.
Juárez-Pérez V Guerchicoff A Rubinstein C Delécluse A 《Applied and environmental microbiology》2002,68(3):1228-1231
We cloned and sequenced a new cytolysin gene from Bacillus thuringiensis subsp. medellin. Three IS240-like insertion sequence elements and the previously cloned cyt1Ab and p21 genes were found in the vicinity of the cytolysin gene. The cytolysin gene encodes a protein 29.7 kDa in size that is 91.5% identical to Cyt2Ba from Bacillus thuringiensis subsp. israelensis and has been designated Cyt2Bc. Inclusions containing Cyt2Bc were purified from the crystal-negative strain SPL407 of B. thuringiensis. Cyt2Bc reacted weakly with antibodies directed against Cyt2Ba and was not recognized by an antiserum directed against the reference cytolysin Cyt1Aa. Cyt2Bc was hemolytic only upon activation with trypsin and had only one-third to one-fifth of the activity of Cyt2Ba, depending on the activation time. Cyt2Bc was also mosquitocidal against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, including strains resistant to the Bacillus sphaericus binary toxin. Its toxicity was half of that of Cyt2Ba on all mosquito species except resistant C. quinquefasciatus. 相似文献
16.
17.
The intracellular proteases in sporulated Bacillus thuringiensis subsp. kurstaki were studied to identify the endogenous proteases involved in the activation of protoxin. The proteases obtained with 30% ammonium sulfate saturation were analysed by both gelatin zymography and azocasein hydrolysis. Three proteases with molecular mass 92 kDa, 78 kDa and 69 kDa were identified on gelatin gel and their gelatinolytic activity was inhibited by ethylenediamine tetraacetic acid. Significantly, 1,10-phenanthroline caused an inhibition of the azocasein hydrolytic activity by 98% and ethylenediamine tetraacetic acid by 28%. The three proteases were heat-stable at 65 °C, while the 69-kDa protease was active up to 75 °C. Intracellular protease-deficient mutants (ethyl methanesulfonate mutagenesis) could not generate the active toxin suggesting the existence of a specific enzyme affecting the conversion of protoxin to toxin. 相似文献
18.
Christin T. Choma Witold K. Surewicz Paul R. Carey Marianne Pozsgay Harvey Kaplan 《Journal of Protein Chemistry》1990,9(1):87-94
The secondary structure of the toxin fromBacillus thuringiensis subsp.kurstaki (Btk) HD-73 was estimated by Raman, infrared, and circular dichroism spectroscopy, and by predictive methods. Circular dichroism and infrared spectroscopy gave an estimate of 33–40% -helix, whereas Raman and predictive methods gave approximately 20%. Raman and circular dichroism spectra, as well as predictive methods, indicated that the toxin contains 32–40% -sheet structure, whereas infrared spectroscopy gave a slightly lower estimate. Thus, all of these approaches are in agreement that the native conformation of Btk HD-73 toxin is highly folded and contains considerable amounts of both -helical and -sheet structures. No significant differences were detected in the secondary structure of the toxin either in solution or as a hydrated pellet. 相似文献
19.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices 1 and 2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the 1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway. 相似文献
20.
The Bacillus thuringiensis insecticidal toxin binds biotin-containing proteins. 总被引:1,自引:1,他引:1 下载免费PDF全文
Brush border membrane vesicles from larvae of the tobacco hornworm, Manduca sexta, contain protein bands of 85 and 120 kDa which react directly with streptavidin conjugated to alkaline phosphatase. The binding could be prevented either by including 10 microM biotin in the reaction mixture or by prior incubation of the brush border membrane vesicles with an activated 60- to 65-kDa toxin from Bacillus thuringiensis HD-73. The ability of B. thuringiensis toxins to recognize biotin-containing proteins was confirmed by their binding to pyruvate carboxylase, a biotin-containing enzyme, as well as to biotinylated ovalbumin and biotinylated bovine serum albumin but not to their nonbiotinylated counterparts. Activated HD-73 toxin also inhibited the enzymatic activity of pyruvate carboxylase. The biotin binding site is likely contained in domain III of the toxin. Two highly conserved regions within domain III are similar in sequence to the biotin binding sites of avidin, streptavidin, and a biotin-specific monoclonal antibody. In particular, block 4 of the B. thuringiensis toxin contains the YAS biotin-specific motif. On the basis of its N-terminal amino acid sequence, the 120-kDa biotin-containing protein is totally distinct from the 120-kDa aminopeptidase N reported to be a receptor for Cry1Ac toxin. 相似文献