首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Although the involvement of protease-activating receptor PAR1 and PAR4 is well established in platelet aggregation, their role in platelet adhesion and spreading has yet to be characterized. We investigated platelet adhesion and spreading on a fibrinogen matrix after PAR1 and PAR4 stimulation in correlation with the activation of two MAPKs, ERK2 and p38. Of the two PAR-activating peptides (PAR-APs), PAR1-AP and PAR4-AP, which both induce adhesion, only PAR4-AP induced full platelet spreading. Although both PAR1-AP and PAR4-AP induced ADP secretion, which is required for platelet spreading, only PAR4-AP induced sustained Ca(2+) mobilization. In these conditions of PAR4 induction, ERK2 and p38 activation were involved in platelet spreading but not in platelet adhesion. p38 phosphorylation was dependent on ADP signaling through P2Y12, its receptor. ERK2 phosphorylation was triggered through integrin alphaIIbbeta3 outside-in signaling and was dependent on the Rho pathway. ERK2 and p38 activation induced phosphorylation of the myosin light chain and actin polymerization, respectively, necessary for cytoskeleton reorganization. These findings provide the first evidence that thrombin requires PAR4 for the full spreading response. ERK2 and p38 and sustained Ca(2+) mobilization, involved in PAR4-induced platelet spreading, contribute to the stabilization of platelet thrombi at sites of high thrombin production.  相似文献   

2.
The relationship between agonist-sensitive calcium compartments and those discharged by the Ca(2+)-ATPase inhibitor thapsigargin were studied in human platelets. In this context, calcium mobilization from intracellular pools and manganese influx was investigated in relation to the effect of altered cyclic-nucleotide levels. For maximal calcium release from intracellular stores, thapsigargin, compared to a receptor agonist like thrombin, requires the platelet's self-amplification mechanism, known to generate thromboxane A2. With this lipid mediator formed, thapsigargin released calcium and stimulated manganese influx in a manner similar to thrombin. Blocking the thromboxane receptor by addition of sulotroban (BM13.177) or, alternatively, increasing platelet cAMP or cGMP using prostacyclin or sodium nitroprusside, dramatically reduced the ability of thapsigargin to release calcium from intracellular compartments. The same experimental conditions significantly reduced the rate of manganese influx initiated by thapsigargin compared to thrombin. The experiments indicate that thapsigargin-sensitive compartments play only a minor role in inducing manganese influx compared to the receptor-sensitive compartment. Cyclic nucleotides accelerate the redistribution of an agonist-elevated platelet calcium into the thapsigargin-sensitive compartment, from which calcium can be released by inhibition of the Ca(2+)-ATPase. In human platelets, thapsigargin-induced calcium increase and influx were responsible for only part the calcium release resulting from inhibition of the corresponding ATPase; another part results from the indirect effect of thapsigargin acting via thromboxane-A2-receptor activation. Cyclic nucleotides are therefore an interesting regulatory device which can modify the thapsigargin response by not allowing the self-amplification mechanism of platelets to operate.  相似文献   

3.
The target calcium store of nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent endogenous calcium-mobilizing compound known to date, has been proposed to reside in the lysosomal compartment or in the endo/sarcoplasmic reticulum. This study was performed to test the hypothesis of a lysosomal versus an endoplasmic reticular calcium store sensitive to NAADP in T-lymphocytes. Pretreatment of intact Jurkat T cells with glycyl-phenylalanine 2-naphthylamide largely reduced staining of lysosomes by LysoTracker Red and abolished NAADP-induced Ca(2+) signaling. However, the inhibitory effect was not specific since Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate and cyclic ADP-ribose was abolished, too. Bafilomycin A1, an inhibitor of the lysosomal H(+)-ATPase, did not block or reduce NAADP-induced Ca(2+) signaling, although it effectively prevented labeling of lysosomes by LysoTracker Red. Further, previous T cell receptor/CD3 stimulation in the presence of bafilomycin A1, assumed to block refilling of lysosomal Ca(2+) stores, did not antagonize subsequent NAADP-induced Ca(2+) signaling. In contrast to bafilomycin A1, emptying of the endoplasmic reticulum by thapsigargin almost completely prevented Ca(2+) signaling induced by NAADP. In conclusion, in T-lymphocytes, no evidence for involvement of lysosomes in NAADP-mediated Ca(2+) signaling was obtained. The sensitivity of NAADP-induced Ca(2+) signaling toward thapsigargin, combined with our recent results identifying ryanodine receptors as the target calcium channel of NAADP (Dammermann, W., and Guse, A. H. (2005) J. Biol. Chem. 280, 21394-21399), rather suggest that the target calcium store of NAADP in T cells is the endoplasmic reticulum.  相似文献   

4.
Neither Pseudomonas aeruginosa nor flagellin affected cytosolic Ca(2+) concentration ([Ca](i)) in airway epithelial cell lines JME and Calu-3, but bacteria or flagellin activated NF-kappaB, IL-8 promoter, and IL-8 secretion. ATP (purinergic agonist) and thapsigargin (blocks Ca(2+) pump, releases endoplasmic reticulum Ca(2+), and triggers Ca(2+) entry through plasma membrane channels) both increased [Ca](i) but hardly stimulated NF-kappaB and IL-8. ATP and thapsigargin elicited larger, synergistic activations of NF-kappaB and IL-8 secretion when combined with flagellin. BAPTA-AM (to buffer [Ca](i)) or Ca(2+)-free solution reduced increases in [Ca](i) due to ATP or thapsigargin and also reduced NF-kappaB activation and IL-8 secretion triggered by flagellin, ATP, thapsigargin, ATP + flagellin, and thapsigargin + flagellin. IL-8 promoter analysis showed that AP-1 and CCAAT/enhancer-binding protein (C/EBP)beta/nuclear factor for IL-6 (NF-IL6) sites were important for IL-8 expression, and the NF-kappaB-binding site was critical for activation by all agonists and for activation by [Ca](i). Thus increased [Ca](i) was not required for P. aeruginosa- or flagellin-activated NF-kappaB and IL-8 expression and secretion, and increased [Ca](i) was only weakly stimulatory during activation by ATP or thapsigargin. However, ATP- or thapsigargin-induced increases in [Ca](i) synergized with flagellin or P. aeruginosa, and buffering or reducing [Ca](i) reduced these responses. Thus [Ca](i) plays an important regulatory role in P. aeruginosa- or flagellin-activated innate immune responses in airway epithelia. Dose-dependent responses indicated that flagellin-ATP synergism occurred most prominently at ATP concentrations ([ATP]) > 10 microM and [flagellin] >10(-8) g/ml and during steady increases rather than oscillations in [Ca](i).  相似文献   

5.
The aim of this work was to investigate the role of cytosolic calcium and calmodulin-dependent systems in the activation of glucose uptake in the human megakaryocytic cell line M07e. Glucose uptake was significantly raised by elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)) with thapsigargin, this effect being additive to the activation induced by cytokines (SCF, GM-CSF and TPO) and hydrogen peroxide. Intracellular Ca(2+) chelation by BAPTA decreased basal and activated glucose uptake in a dose-dependent manner. BAPTA reduced the GLUT1 translocation induced by SCF and H(2)O(2), suggesting a major role for Ca(2+) in GLUT1 intracellular trafficking. In the absence of extracellular Ca(2+), 2-aminoethoxydiphenyl-borate (2-APB) abolished the activation of glucose uptake induced by cytokines and H(2)O(2) suggesting an involvement in GLUT1 regulation in responses related to InsP(3)-induced Ca(2+) release. Under our experimental conditions, all the stimuli inducing glucose uptake activation failed to increase [Ca(2+)](c) suggesting that cytosolic Ca(2+) plays a permissive role in the regulation of GLUT1. The calmodulin antagonist W-7 and the inhibitor of Ca(2+)-calmodulin dependent protein kinase II (CAMK II) KN-62 removed the glucose transport activation by all the tested stimuli. These results suggest that in M07e cells calmodulin and CAMKII are involved in GLUT1 stimulation by cytokines and ROS.  相似文献   

6.
During thrombus formation, thrombin, which is abundantly present at sites of vascular injury, activates platelets in part via autocrine-produced ADP. We investigated the signaling pathways by which thrombin and ADP in synergy induced platelet Ca(2+) elevation and procoagulant activity, and we monitored the consequences for the coagulation process. Even at high thrombin concentration, autocrine and added ADP enhanced and prolonged Ca(2+) depletion from internal stores via stimulation of the P2Y(12) receptors. This P2Y(12)-dependent effect was mediated via two distinct signaling pathways. The first is enhanced Ca(2+) mobilization by the inositol 1,4,5-trisphosphate receptors due to inhibition of protein kinase A. The second pathway concerns prolonged activation of phosphoinositide 3-kinase (PI3-K) and phospholipase C. Experiments with phosphoinositide 3-kinase isoform-selective inhibitors and p110gamma deficient platelets demonstrated that the phosphoinositide 3-kinase beta and not the phosphoinositide 3-kinase gamma isoform is responsible for the prolonged Ca(2+) response and for the subsequent increases in procoagulant activity and coagulation. Taken together, these results demonstrate a dual P2Y(12)-dependent signaling mechanism, which increases the platelet-activating effect of thrombin by prolongation of Ca(2+) elevation, thereby facilitating the coagulation process.  相似文献   

7.
Phorbol esters, potent activators of protein kinase C (PKC), greatly enhance the release of arachidonic acid and its metabolites (TXA2, HETES, HHT) by Ca2+ ionophores in human platelets. In this paper, we report the relationship between intracellular Ca2+ mobilization and external calcium influx into platelets and the ability of PMA plus A23187 to promote thromboxane A2 (TXA2) synthesis. The enhanced levels of TXA2 due to the synergistic stimulation of the platelets with A23187 and phorbol esters are not affected significantly by the presence of external Ca2+ or the calcium-chelator EGTA. PKC inhibitors, staurosporine and sphingosine, abolished phorbol myristate acetate (PMA) potentiation of TXA2 production which strongly supports the role of PKC in the synergism. Platelet aggregation is more sensitive to PMA and external calcium than TXA2 formation. PMA increased TXA2 production as much as 4-fold at low ionophore concentrations. The A23187-induced rise in [Ca2+]i was reduced by pretreatment of human platelets with phorbol esters, both in the presence and absence of EGTA, and staurosporine reversed this inhibitory effect. These results indicate that the synergistic stimulation of TXA2 production by A23187 and phorbol esters is promoted by intracellular Ca2+ mobilization and not by external calcium influx. Our data also suggest that PKC is involved in the regulation of Ca2+ mobilization from some specific intracellular stores and that PKC may also stimulate the Ca(2+)-dependent phospholipase A2 at suboptimal Ca2+i concentrations.  相似文献   

8.
Basal and receptor-regulated changes in cytoplasmic calcium concentration ([Ca2+]i) were monitored by fluorescence analysis in individual rat pituitary gonadotrophs loaded with the calcium-sensitive dye indo-1. Most gonadotrophs exhibited low amplitude spontaneous oscillations in basal [Ca2+]i that were interspersed by quiescent periods and abolished by removal of extracellular Ca2+ or addition of calcium channel blockers. Such random fluctuations in [Ca2+]i, which reflect the operation of a plasma membrane oscillator, were not coupled to basal gonadotropin secretion. The physiological agonist GnRH induced high amplitude [Ca2+]i oscillations; when a threshold [Ca2+]i level was reached, a cytoplasmic oscillator began to generate extremely regular Ca2+ transients. The time required to reach the threshold [Ca2+]i level was inversely correlated with agonist dose; the frequency, but not the amplitude, of agonist-induced Ca2+ spiking increased with agonist concentration. The duration of the latent period decreased and the frequency of Ca2+ spiking increased with the increase in ambient temperature. At high GnRH concentrations, the calcium transients merged into biphasic responses similar to those observed in cell suspensions at all GnRH concentrations. The presence of spontaneous fluctuations in basal [Ca2+]i did not significantly change the patterns of agonist-induced [Ca2+]i responses. Also, removal of extracellular Ca2+ did not interfere with the frequency or amplitude of Ca2+ spikes, but caused the loss of the plateau phase. Blockade of intracellular Ca(2+)-ATPase pumps by thapsigargin was usually accompanied by a subthreshold increase in [Ca2+]i. In such cells the agonist-induced oscillatory pattern was transformed into the biphasic response. In about 10% of the cells, however, high thapsigargin concentrations induced coarse [Ca2+]i oscillations; subsequent stimulation of such cells with GnRH was ineffective. The cytoplasmic oscillatory and biphasic responses may represent a mechanism for differential activation of Ca(2+)-dependent enzymes and their dependent cellular processes, including hormone secretion. The membrane oscillator is probably responsible for refilling of agonist-sensitive pools during and after agonist stimulation.  相似文献   

9.
Recent studies associate cholesterol excess and atherosclerosis with inflammation. The link between these processes is not understood, but cholesterol is an important component of lipid rafts. Rafts are thought to concentrate membrane signaling molecules and thus regulate cell signaling through G protein-coupled pathways. We used methyl beta-cyclodextrin to deplete cholesterol from polymorphonuclear neutrophil (PMN) rafts and thus study the effects of raft disruption on G protein-coupled Ca(2+) mobilization. Methyl beta-cyclodextrin had no effect on Ca(2+) store depletion by the G protein-coupled agonists platelet-activating factor or fMLP, but abolished agonist-stimulated Ca(2+) entry. Free cholesterol at very low concentrations regulated Ca(2+) entry into PMN via nonspecific Ca(2+) channels in a biphasic fashion. The specificity of cholesterol regulation for Ca(2+) entry was confirmed using thapsigargin studies. Responses to cholesterol appear physiologic because they regulate respiratory burst in a proportional biphasic fashion. Investigating further, we found that free cholesterol accumulated in PMN lipid raft fractions, promoting formation and polarization of membrane rafts. Finally, the transient receptor potential calcium channel protein TRPC1 redistributed to raft fractions in response to cholesterol. The uniformly biphasic relationships between cholesterol availability, Ca(2+) signaling and respiratory burst suggest that Ca(2+) influx and PMN activation are regulated by the quantitative relationships between cholesterol and other environmental lipid raft components. The association between symptomatic cholesterol excess and inflammation may therefore in part reflect free cholesterol- dependent changes in lipid raft structure that regulate immune cell Ca(2+) entry. Ca(2+) entry-dependent responses in other cell types may also reflect cholesterol bioavailability and lipid incorporation into rafts.  相似文献   

10.
Stimulation of T cell receptor in lymphocytes enhances Ca(2+) signaling and accelerates membrane trafficking. The relationships between these processes are not well understood. We employed membrane-impermeable lipid marker FM1-43 to explore membrane trafficking upon mobilization of intracellular Ca(2+) in Jurkat T cells. We established that liberation of intracellular Ca(2+) with T cell receptor agonist phytohemagglutinin P or with Ca(2+)-mobilizing agents ionomycin or thapsigargin induced accumulation of FM1-43 within the lumen of the endoplasmic reticulum (ER), nuclear envelope (NE), and Golgi. FM1-43 loading into ER-NE and Golgi was not mediated via the cytosol because other organelles such as mitochondria and multivesicular bodies located in close proximity to the FM1-43-containing ER were free of dye. Intralumenal FM1-43 accumulation was observed even when Ca(2+) signaling in the cytosol was abolished by the removal of extracellular Ca(2+). Our findings strongly suggest that release of intracellular Ca(2+) may create continuity between the extracellular leaflet of the plasma membrane and the lumenal membrane leaflet of the ER by a mechanism that does not require global cytosolic Ca(2+) elevation.  相似文献   

11.
Platelets contain high levels of Src family kinases (SFKs), but their functional role downstream of G protein pathways has not been completely understood. We found that platelet shape change induced by selective G(12/13) stimulation was potentiated by SFK inhibitors, which was abolished by intracellular calcium chelation. Platelet aggregation, secretion, and intracellular Ca(2+) mobilization mediated by low concentrations of SFLLRN or YFLLRNP were potentiated by SFK inhibitors. However, 2-methylthio-ADP-induced intracellular Ca(2+) mobilization and platelet aggregation were not affected by PP2, suggesting the contribution of SFKs downstream of G(12/13), but not G(q)/G(i), as a negative regulator to platelet activation. Moreover, PP2 potentiated YFLLRNP- and AYPGKF-induced PKC activation, indicating that SFKs downstream of G(12/13) regulate platelet responses through the negative regulation of PKC activation as well as calcium response. SFK inhibitors failed to potentiate platelet responses in the presence of G(q)-selective inhibitor YM254890 or in G(q)-deficient platelets, indicating that SFKs negatively regulate platelet responses through modulation of G(q) pathways. Importantly, AYPGKF-induced platelet aggregation and PKC activation were potentiated in Fyn-deficient but not in Lyn-deficient mice compared with wild-type littermates. We conclude that SFKs, especially Fyn, activated downstream of G(12/13) negatively regulate platelet responses by inhibiting intracellular calcium mobilization and PKC activation through G(q) pathways.  相似文献   

12.
The present study evaluated the necessity of store-operated Ca(2+) entry in mediating thrombin-induced 20-kDa myosin light chain (MLC(20)) phosphorylation and increased permeability in bovine pulmonary artery endothelial cells (BPAECs). Thrombin (7 U/ml) and thapsigargin (1 microM) activated Ca(2+) entry through a common pathway in confluent BPAECs. Similar increases in MLC(20) phosphorylation were observed 5 min after thrombin and thapsigargin challenge, although thrombin produced a sustained increase in MLC(20) phosphorylation that was not observed in response to thapsigargin. Neither agonist increased MLC(20) phosphorylation when Ca(2+) influx was inhibited. Thrombin and thapsigargin induced inter-endothelial cell gap formation and increased FITC-dextran (molecular radii 23 A) transfer across confluent BPAEC monolayers. Activation of store-operated Ca(2+) entry was required for thapsigargin and thrombin receptor-activating peptide to increase permeability, demonstrating that activation of store-operated Ca(2+) entry is coupled with MLC(20) phosphorylation and is associated with intercellular gap formation and increased barrier transport of macromolecules. Unlike thrombin receptor-activating peptide, thrombin increased permeability without activation of store-operated Ca(2+) entry, suggesting that it partly disrupts the endothelial barrier through a proteolytic mechanism independent of Ca(2+) signaling.  相似文献   

13.
Inhibitors of the endoplasmic reticulum Ca(2+)-ATPase like thapsigargin (TG) and 2,5-di (tert-butyl)-1,4-benzohydroquinone (tBuBHQ) cause increases in cytosolic calcium in intact human platelets resulting from prevention of reuptake. A maximal concentration of TG (0.2 microM) mobilized 100% of sequestered Ca2+ compared to the action of a receptor agonist like thrombin (0.1 U/ml). A maximal dose of tBuBHQ (50 microM) stimulated release of about 40% of intracellular calcium compared to thrombin and TG. The reduced ability of tBuBHQ to release calcium can be explained with an inhibitory effect on the cyclooxygenase pathway (Ki approximately 7 microM). Therefore tBuBHQ is not able to cause platelet aggregation compared to TG. In the presence of a cyclooxygenase inhibitor or a thromboxane A2 receptor antagonist the action of TG is identical to that observed with tBuBHQ. Generally, inhibition of calcium sequestration does not automatically result in platelet activation. In contrast to a receptor mediated activation Ca(2+)-ATPase inhibitors require the self-amplification mechanism of endogenously formed thromboxane A2 to cause a similar response. We conclude that the calcium store sensitive to Ca(2+)-ATPase inhibitors is a subset of the receptor sensitive calcium pool.  相似文献   

14.
CD146 (S-Endo 1 Ag or MUC18) is a transmembrane glycoprotein expressed on endothelial cells on the whole vascular tree. CD146 is located at the intercellular junction where it plays a role in the cohesion of the endothelial monolayer. CD146 engagement initiates an outside-in signaling pathway involving the protein tyrosine kinases FYN and FAK as well as paxillin. Here we report that CD146 engagement by its specific monoclonal antibody in human umbilical vein endothelial cells induces a Ca(2+) influx that is sensitive to thapsigargin and EGTA treatment, indicating that CD146 engagement initiates a store-operated calcium mobilization. In addition, biochemical and pharmacological analysis revealed that CD146 engagement initiates the tyrosine phosphorylation of phospholipase C-gamma, Pyk2, and p130(Cas). Pharmacological inhibition of Ca(2+) flux with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethyl ester and EGTA indicated that an increase in Ca(2+) is required for Pyk2 and p130(Cas) tyrosine phosphorylation. Moreover, a complex association was observed between Pyk2, p130(Cas), and paxillin. These results indicate that CD146 is coupled to a FYN-dependent pathway that triggers Ca(2+) flux via phospholipase C-gamma activation leading subsequently to the tyrosine phosphorylation of downstream targets such as Pyk2, p130(Cas), FAK, and paxillin. In addition to its role in cell-cell adhesion, CD146 is a signaling molecule involved in the dynamics of actin cytoskeleton rearrangement.  相似文献   

15.
We have investigated the role of NAADP-mediated Ca(2+) mobilization in endothelin (ET) signaling via endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) in rat peritubular smooth muscle cells. Microinjection and extracellular application of NAADP were both able to elicit Ca(2+) release which was blocked by inhibitory concentrations of NAADP, by impairing Ca(2+) uptake in acidic stores with bafilomycin, and by thapsigargin. Ca(2+) release in response to selective ETB stimulation was abolished by inhibition of NAADP signaling through the same strategies, while these treatments only partially impaired ETA-dependent Ca(2+) signaling, showing that transduction of the ETB signal is dependent on NAADP. In addition, we show that lipid rafts/caveolae contain ETA, ETB, and NAADP/cADPR generating enzyme CD38 and that stimulation of ETB receptors results in increased CD38 activity; interestingly, ETB- (but not ETA-) mediated Ca(2+) responses were antagonized by disruption of lipid rafts/caveolae with methyl-beta-cyclodextrin. These data demonstrate a primary role of NAADP in ETB-mediated Ca(2+) signaling and strongly suggest a novel role of lipid rafts/caveolae in triggering ET-induced NAADP signaling.  相似文献   

16.
The effects of actin cytoskeleton disruption by cytochalasin D and latrunculin A on Ca2+ signals evoked by ADP, UTP or thapsigargin were investigated in glioma C6 cells. Despite the profound alterations of the actin cytoskeleton architecture and cell morphology, ADP and UTP still produced cytosolic calcium elevation in this cell line. However, calcium mobilization from internal stores and Ca2+ influx through store-operated Ca2+ channels induced by ADP and UTP were strongly reduced. Cytochalasin D and latrunculin A also diminished extracellular Ca2+ influx in unstimulated glioma C6 cells previously incubated in Ca2+ free buffer. In contrast, the disruption of the actin cytoskeleton had no effect on thapsigargin-induced Ca2+ influx in this cell line. Both agonist- and thapsigargin-generated Ca2+ entry was significantly decreased by the blocker of store-operated Ca2+ channels, 2-aminoethoxydiphenylborate. The data reveal that two agonists and thapsigargin activate store-operated Ca2+ channels but the mechanism of activation seems to be different. While the agonists evoke a store-mediated Ca2+ entry that is dependent on the actin cytoskeleton, thapsigargin apparently activates an additional mechanism, which is independent of the disruption of the cytoskeleton.  相似文献   

17.
Calcium is a key mediator of hormone-induced enzyme secretion in pancreatic acinar cells. At the same time, abnormal Ca(2+) responses are associated with pancreatitis. We have recently shown that inhibition of phosphatidylinositol 3-kinase (PI3-kinase) by LY-294002 and wortmannin, as well as genetic deletion of PI3-kinase-gamma, regulates Ca(2+) responses and the Ca(2+)-sensitive trypsinogen activation in pancreatic acinar cells. The present study sought to determine the mechanisms of PI3-kinase involvement in Ca(2+) responses induced in these cells by CCK and carbachol. The PI3-kinase inhibitors inhibited both Ca(2+) influx and mobilization from intracellular stores induced by stimulation of acini with physiological and pathological concentrations of CCK, as well as with carbachol. PI3-kinase inhibition facilitated the decay of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) oscillations observed in individual acinar cells. The PI3-kinase inhibitors decreased neither CCK-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] production nor Ins(1,4,5)P(3)-induced Ca(2+) mobilization, suggesting that the effect of PI3-kinase inhibition is not through Ins(1,4,5)P(3) or Ins(1,4,5)P(3) receptors. PI3-kinase inhibition did not affect Ca(2+) mobilization induced by thapsigargin, a specific inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Moreover, SERCA blockade with thapsigargin abolished the effects of pharmacological and genetic PI3-kinase inhibition on [Ca(2+)](i) signals, suggesting SERCA as a downstream target of PI3-kinase. Both pharmacological PI3-kinase inhibition and genetic deletion of PI3-kinase-gamma increased the amount of Ca(2+) in intracellular stores during CCK stimulation. Finally, addition of the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate to permeabilized acini significantly attenuated Ca(2+) reloading into the endoplasmic reticulum. The results indicate that PI3-kinase regulates Ca(2+) signaling in pancreatic acinar cells through its inhibitory effect on SERCA.  相似文献   

18.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

19.
In agonist-induced platelet activation, the collagen platelet receptor integrin alpha2beta1 is activated to high-affinity states through ADP involvement [Jung, S.M. & Moroi, M. (2000) J. Biol. Chem. 275, 8016-8026]. Here we determined the ADP-receptor subtypes involved and their relative contributions to alpha2beta1 activation (assessed by soluble-collagen binding) using the P2Y12 antagonist AR-C69931MX and P2Y1 antagonists adenosine 3',5'-diphosphate (Ado(3,5)PP) and adenosine 3'-phosphate 5'-phosphosulfate (AdoPPS). All three inhibited alpha2beta1 activation induced by low or high ADP, low thrombin, or low collagen-related peptide (CRP) concentrations; however, AR-C69931MX was markedly more inhibitory than the P2Y1 antagonists, suggesting the greater contribution of P2Y12. Inhibition patterns by various combinations of AR-C69931MX, AdoPPS, and wortmannin suggested that P2Y1 and P2Y12 mediate alpha2beta1 activation through different pathways, with possible involvement of phosphoinositide 3-kinase in both. Low concentrations of the acetoxy-methyl derivative of 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (calcium chelator) markedly decreased alpha2beta1 activation by low thrombin or CRP, but did not affect that by low or high ADP. Measurements of intracellular Ca2+ level (fluorimetric method) and alpha2beta1 activation (soluble-collagen binding) in the same platelet preparation indicated that alpha2beta1 activation via ADP receptors was independent of intracellular Ca2+ release. Our data indicate that integrin alpha2beta1 activation by ADP occurs through an inside-out signaling mechanism involving differential contributions by P2Y1 and P2Y12 wherein each contributes to some portion of the activation, with the stronger contribution of P2Y12. Furthermore, intracellular Ca2+ increase is not directly related to integrin alpha2beta1 activation, meaning that it is separate from the calcium mobilization pathways that these two ADP receptors are involved in.  相似文献   

20.
Excystation of Giardia lamblia, which initiates infection, is a poorly understood but dramatic differentiation induced by physiological signals from the host. Our data implicate a central role for calcium homeostasis in excystation. Agents that alter cytosolic Ca(2+) levels (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-tetra(acetyloxymethyl) ester, a Ca(2+) channel blocker, Ca(2+) ionophores, and thapsigargin) strongly inhibit excystation. Treatment of Giardia with thapsigargin raised intracellular Ca(2+) levels, and peak Ca(2+) responses increased with each stage of excystation, consistent with the kinetics of inhibition. Fluorescent thapsigargin localized to a likely Ca(2+) storage compartment in cysts. The ability to sequester ions in membrane-bounded compartments is a hallmark of the eukaryotic cell. These studies support the existence of a giardial thapsigargin-sensitive Ca(2+) storage compartment resembling the sarcoplasmic/endoplasmic reticulum calcium ATPase pump-leak system and suggest that it is important in regulation of differentiation and appeared early in the evolution of eukaryotic cells. Calmodulin antagonists also blocked excystation. The divergent giardial calmodulin localized to the eight flagellar basal bodies/centrosomes, like protein kinase A. Inhibitor kinetics suggest that protein kinase A signaling triggers excystation, whereas calcium signaling is mainly required later, for parasite activation and emergence. Thus, the basal bodies may be a cellular control center to coordinate the resumption of motility and cytokinesis in excystation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号