首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The MBR1 gene was isolated as a multicopy suppressor of the phenotype on glycerol medium of a?Saccharomyces cerevisiae strain mutant for the Hap2/3/4/5 transactivator complex. In this paper, we show that Mbr1p is a limiting factor for growth on glycerol medium under the following sub-optimal culture conditions: in late growth phase, at low temperature, at high external pH or in the presence of 1,10-phenanthroline. Moreover, deletion of MBR1 prot- ects cells against stress, whilst overexpression of this gene has the opposite effect. MBR1 expression is induced in the late growth phase and is negatively controlled by the cAMP-dependent protein kinase A (PKA). Both activation of PKA or overexpression of SOK1 or SCH9– two genes isolated as multicopy suppressors of a PKA null mutant – suppress the mbr1 growth defect. Our results indicate that Mbr1p is not an essential element of any one of these pathways. Deletion of SAC1, a gene implicated in vesicular transport, in association with MBR1 deletion, causes synthetic lethality. A possible role of Mbr1p in intracellular trafficking is discussed.  相似文献   

2.
3.
Saccharomyces cerevisiae cells require two genes, CSG1/SUR1 and CSG2, for growth in 50 mM Ca2+, but not 50 mM Sr2+. CSG2 was previously shown to be required for the mannosylation of inositol-phosphorylceramide (IPC) to form mannosylinositolphosphorylceramide (MIPC). Here we demonstrate that SUR1/CSG1 is both genetically and biochemically related to CSG2. Like CSG2, SUR1/CSG1 is required for IPC mannosylation. A 93–amino acid stretch of Csg1p shows 29% identity with the α-1, 6-mannosyltransferase encoded by OCH1. The SUR1/CSG1 gene is a dose-dependent suppressor of the Ca2+-sensitive phenotype of the csg2 mutant, but overexpression of CSG2 does not suppress the Ca2+ sensitivity of the csg1 mutant. The csg1 and csg2 mutants display normal growth in YPD, indicating that mannosylation of sphingolipids is not essential. Increased osmolarity of the growth medium increases the Ca2+ tolerance of csg1 and csg2 mutant cells, suggesting that altered cell wall synthesis causes Ca2+-induced death. Hydroxylation of IPC-C to form IPC-D requires CCC2, a gene encoding an intracellular Cu2+ transporter. Increased expression of CCC2 or increased Cu2+ concentration in the growth medium enhances the Ca2+ tolerance of csg1 mutants, suggesting that accumulation of IPC-C renders csg1 cells Ca2+ sensitive. Received: 11 November 1996 / Accepted: 21 May 1997  相似文献   

4.
Genes belonging to the ras superfamily encode low-molecular-weight GTP/GDP-binding proteins that are highly conserved in wide variety of organisms. We used the polymerase chain reaction (PCR) to isolate a novel member of the ras superfamily from the filamentous fungus Neurospora crassa and obtained a mammalian Krev-1 homolog. We named the gene krev-1 and analyzed its structure and function. The krev-1 gene encodes a polypeptide of 225 amino acids, which is nearly 60% homologous to the mammalian Krev-1 p21. The krev-1 gene product (KREV1) is functionally analogous to mammalian Krev-1 p21 and Rsr1p/Bud1p, a Krev-1 homolog from the yeast Saccharomyces cerevisiae. GAL1-driven expression of KREV1 in a wild-type yeast strain resulted in a random budding pattern, as did its mammalian counterpart Krev-1 p21. We disrupted the krev-1 gene by RIP (repeat-induced point mutation), but the krev-1 disruptants showed no abnormalities. By in vitro mutagenesis, we constructed several mutant krev-1 genes (G21V, A68T, and D128A) which mimic constitutively active mutants of Ha-ras, and the krev-1 (K25N) mutant which is analogous to a dominant-negative mutant of Ha-ras. Each mutant gene was introduced into the wild-type strain and the phenotypes were analyzed. We could not observe any difference in vegetative growth between these transformants. When each strain was used as the female in mating tests, the development of perithecia from protoperithecia was inhibited in all cases. The results indicate that the krev-1 gene may be involved in sexual cycle progression. Received: 28 January 1997 / Accepted: 3 April 1997  相似文献   

5.
We analyzed the functional relationship between the Escherichia coli RNase E and the CafA protein, which show extensive sequence similarity. The temperature-sensitive growth of the RNase E mutant strain ams1 was partially suppressed by multicopy plasmids bearing the cafA gene. Introduction of a cafA::cat mutation enhanced the temperature sensitivity of the ams1 mutant. These results suggest that there is a functional homology between these two proteins. Received: 17 May 1996 / Accepted: 1 October 1996  相似文献   

6.
7.
Leucine uptake by Saccharomyces cerevisiae is mediated by three transport systems, the general amino acid transport system (GAP), encoded by GAP1, and two group-specific systems (S1 and S2), which also transport isoleucine and valine. A new mutant defective in both group-specific transport activities was isolated by employing a gap1 leu4 strain and selecting for trifluoroleucine-resistant mutants which also showed greatly reduced ability to utilize l-leucine as sole nitrogen source and very low levels of [14C]l-leucine uptake. A multicopy plasmid containing a DNA fragment which complemented the leucine transport defect was isolated by selecting for transformants that grew normally on minimal medium containing leucine as nitrogen source and subsequently assaying [14C]l-leucine uptake. Transformation of one such mutant, lep1, restored sensitivity to trifluoroleucine. The complementing gene, designated LEP1, was subcloned and sequenced. The LEP1 ORF encodes a large protein that lacks characteristics of a transporter or permease (i.e., lacks hydrophobic domains necessary for membrane association). Instead, Lep1p is a very basic protein (pI of 9.2) that contains a putative bipartite signal sequence for targeting to the nucleus, suggesting that it might be a DNA-binding protein. A database search revealed that LEP1 encodes a polypeptide that is identical to Sac3p except for an N-terminal truncation. The original identification of SAC3 was based on the isolation of a mutant allele, sac3-1, that suppresses the temperature-sensitive growth defect of an actin mutant containing the allele act1-1. Sac3p has been previously shown to be localized in the nucleus. When a lep1 mutant was crossed with a sac3 deletion mutant, no complementation was observed, indicating that the two mutations are functionally allelic. Received: 6 January 1999 / Accepted: 4 June 1999  相似文献   

8.
In the course of the Bacillus subtilis genome sequencing project, we identified an open reading frame encoding a putative 16.4 kDa protein. This protein shows, respectively, 34% and 25% identity with the Escherichia coli regulatory proteins Lrp and AsnC. Phylogenetic analysis suggests that it represents a new group in the AsnC-Lrp family. Sequence comparisons, as well as immunodetection experiments, lead to the conclusion that the product of this B. subtilislrp-likegene is a bona fide Lrp protein – the first one to be detected in gram-positive bacteria. When expressed in E.␣coli, the B. subtilis Lrp-like protein is able to repress, by about two-fold, the expression of the ilvIH operon which is normally regulated by E. coli Lrp, indicating functional similarity in their regulatory targets. Vegetative growth of a B. subtilis lrp-like mutant is not affected in rich medium. However, the lrp-like mutation causes a transitory inhibition of growth in minimal medium in the presence of valine and isoleucine, which is relieved by leucine. This points to a possible role in regulation of amino acid metabolism. In addition, sporogenesis occurs earlier in the lrp-like mutant than in the reference strain, implying that the B. subtilis Lrp-like protein plays a role in the growth phase transition. Received: 28 January 1997 / Accepted: 18 April 1997  相似文献   

9.
The organization of the actin cytoskeleton plays an integral role in cell morphogenesis of all eukaryotes. We have isolated a temperature-sensitive mutant in Schizosaccharomyces pombe, wat1-1, in which acting patches are delocalized, resulting in an elliptically shaped cell phenotype. Molecular cloning and DNA sequencing of wat1 + showed that the gene encodes a 314 residue protein containing WD-40 repeats. Cells lacking wat1 + are slow growing but viable at 25° C and temperature-sensitive for growth above 33° C. At restrictive temperature, wat1-d strains are phenotypically indistinguishable from wat1-1. When combined with a deletion for the wat1 + gene, cdc mutants failed to elongate at restrictive temperature and exhibited alterations in actin patch localization. This analysis suggests that wat1 + is required directly or indirectly for polarized cell growth in S. pombe. Wat1p and a functional, epitope-tagged, version of Wat1p can be overproduced without inducing alterations in cell morphology. Received: 18 September 1996 / Accepted: 22 October 1996  相似文献   

10.
The small nuclear gene SOM1 of Saccharomyces cerevisiae was isolated as a multicopy suppressor of a mutation in the IMP1 gene, which encodes the mitochondrial inner membrane peptidase subunit 1 (Imp1). Analysis revealed that Som1 and Imp1 are components of a mitochondrial protein export system, and interaction between these two proteins is indicated by the genetic suppression data. Here we describe the identification of a gene from Kluyveromyces lactis, which restores respiratory function to a S. cerevisiae SOM1 deletion mutant at 28° C. The sequence of the K. lactis gene predicts a protein product of 8.1-kDa, comprising 71 amino acid residues, with a putative mitochondrial signal sequence at its N-terminus. The protein is 50% identical to its S.cerevisiae counterpart. The expression pattern of a homologous sequence in Leishmania major suggests a more general role for SOM1 in mitochondrial biogenesis and protein sorting. The various Som1 proteins exhibit a highly conserved region and a remarkable pattern of cysteine residues. A protein of the expected size was transcribed and translated in vitro. The Som1 protein was detected in fractions of S. cerevisiae enriched for mitochondria and found to be associated with the inner mitochondrial membrane. Received: 22 July 1997 / Accepted: 27 October 1997  相似文献   

11.
The bz-m1 mutation in maize was one of the first to arise by direct transposition of the chromosome-breaking Ds element from its original or `standard' location in chromosome 9S to a known locus in the same chromosome arm. Thus, elucidation of its structure should shed light on the nature of the original Ds element described by McClintock in 1948. The Ds insertion in bz-m1 has been reported to be only 1.2 kb long – much shorter than other chromosome-breaking Ds elements that have been described. We have characterized here the Ds element in our bz-m1 stocks and have confirmed by genetic and molecular tests that, in the presence of Ac, it acts as a chromosome breaker. The Ds insertion at bz-m1 is 1260 bp long. Besides its normal 5′ and 3′ ends, it contains an internal 3′ end at the same junction as the chromosome-breaking double Ds element that has been found in several sh mutations. Thus, it appears to have arisen from the 4.1-kb double Ds by internal deletion of 2.9 kb. Because the element has lost one internal 5′ end, but retains the chromosome-breaking properties of double Ds, we have named it sesqui-Ds (sDs). The origin, structure and properties of sDs vis-à-vis double Ds support the hypothesis that double Ds corresponds to the chromosome-breaking Ds element at the `standard' location in 9S. Received: 10 March 1997 / Accepted: 2 May 1997  相似文献   

12.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric (CA) and isocitric (ICA) acids, triggered by growth limitation caused by different factors and an excess of carbon source. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether the CA/ICA product ratio can be influenced by gene-dose-dependent overexpression or by disruption of the isocitrate lyase (ICL)-encoding gene ICL1, recombinant Y. lipolytica strains were constructed, which harbour multiple ICL1 copies or a defective icl1 allele. The high-level expression of ICL in ICL1 multicopy integrative transformants resulted in a strong shift of the CA/ICA ratio into direction of CA. On glycerol, glucose and sucrose, the ICA proportion decreased from 10–12% to 3–6%, on sunflower oil or hexadecane even from 37–45% to 4–7% without influencing the total amount of acids (CA and ICA) produced. In contrast, the loss of ICL activity in icl1-defective strains resulted in a moderate 2–5% increase in the ICA proportion compared to ICL wild-type strains on glucose or glycerol.  相似文献   

13.
We employed the constitutive BCK1-20 allele of the gene for the MAP kinase kinase kinase (MAPKKK) in the yeast Pkc signal transduction pathway to develop a genetic screen for mutants in genes encoding upstream components. Transposon mutagenesis yielded a mutant that was completely dependent on the active allele in the absence of osmotic stabilization. The transposon had integrated at the yeast SLG1 (HCS77) locus. This gene encodes a putative membrane protein. Haploid slg1 deletion strains are sensitive to caffeine, as expected for mutants in the Pkc pathway, as well as a variety of other drugs. The response to elevated temperatures and the dependence on osmotic stabilization depends on the genetic background. Thus, in the strain used for mutagenesis, disruption of SLG1 causes the cells to become non-viable in the absence of osmotic stabilization at both 30° C and 37° C. In a different genetic background this phenotype was not observed. Sensitivity of the haploid deletion mutants to caffeine can be partially suppressed by overexpression of genes for other components of the Pkc pathway, such as PKC1, SLT2, ROM2, and STE20. In addition, a SLG1-lacZ reporter construct shows higher expression in the presence of caffeine or magnesium chloride in a wild-type diploid background. Received: 2 December 1997 / Accepted: 15 December 1997  相似文献   

14.
15.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export. Received: 9 January 1998 / Accepted: 4 May 1998  相似文献   

16.
The small GTPase Ran is essential for nucleocytoplasmic transport of macromolecules. In the yeast Saccharomyces cerevisiae, Rna1p functions as a Ran-GTPase activating protein (RanGAP1). Strains carrying the rna1-1 mutation exhibit defects in nuclear transport and, as a consequence, accumulate precursor tRNAs. We have isolated two recessive suppressors of the rna1-1 mutation. Further characterization of one of the suppressor mutations, srn10-1, reveals that the mutation (i) can not bypass the need for Rna1p function and (ii) suppresses the accumulation of unspliced pre-tRNA caused by rna1-1. The SRN10 gene is not essential for cell viability and encodes an acidic protein (pI = 5.27) of 24.8 kDa. Srn10p is located in the cytoplasm, as determined by indirect immunofluorescence microscopy. Two-hybrid analysis reveals that there is a physical interaction between Srn10p and Rna1p in vivo. Our results identify a protein that interacts with the yeast RanGAP1. Received: 2 March 1998 / Accepted: 17 June 1998  相似文献   

17.
18.
During tetrapyrrole biosynthesis 5-aminolevulinic acid dehydratase (ALAD) catalyzes the condensation of two molecules of 5-aminolevulinic acid (ALA) to form one molecule of the pyrrole derivative porphobilinogen. In Escherichia coli, the enzyme is encoded by the gene hemB. The hemB gene was cloned from Pseudomonas aeruginosa by functional complementation of an E. coli hemB mutant. An open reading frame of 1011 bp encoding a protein of 336 amino acids (Mr = 37 008) was identified. The gene was mapped to SpeI fragment G and DpnI fragment G of the P. aeruginosa chromosome, corresponding to the 10 to 12 min region of the new map or 19 to 22 min interval of the old map. The 5′ end of the hemB mRNA was determined and the −10 and −35 regions of a potential σ70-dependent promoter were localized. No obvious regulation of the hemB gene by oxygen, nitrate, heme or iron was detected. Alignment of the amino acid sequences deduced from hemB revealed a potential metal-binding site and indicated that the enzyme is Mg2+-dependent. P. aeruginosa hemB was overexpressed in an E. coli hemB mutant using the phage T7 RNA polymerase system and its Mg2+-dependent activity was directly demonstrated. Received: 11 July 1997 / Accepted: 9 October 1997  相似文献   

19.
20.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号