首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large restriction fragments of genomic DNA from Staphylococcus species were separated by pulsed-field gel electrophoresis (PFGE). Five different strains of S. aureus (ISP8, SAU3A, PS96, ATCC 6538, ATCC 15564) and three representative strains of S. haemolyticus SM102, S. warneri MCS4, S. cohnii LK478 from human hosts, and one strain of S. aureus (ATCC 8432) from an avian host were used in this study. Since Staphylococcus is A + T rich (approximately 67%), restriction fragments were obtained by digesting chromosomal DNA with endonucleases that recognize GC-rich sequences. Five enzymes Csp I, Sma I, Ecl XI, Ksp I, or Sac II were used for generation of few (7 to 16) distinctly separated fragments, with average sizes in the range of 200-300 kb. The size distribution of restriction fragments for each enzyme for each strain produced a strain-identifying fingerprint, and the genome size of each strain was determined from such restriction fragments separated by PFGE.  相似文献   

2.
A combined physical and genetic map of theCorynebacterium glutamicum ATCC 13032 chromosome was constructed using pulsed-field gel electrophoresis (PFGE) and hybridizations with cloned gene probes. Total genomic DNA was digested with the meganucleasesSwaI (5′-ATTTAAAT-3′),PacI (5′-TTAATTAA-3′), andPmeI (5′-GTTTAAAC-3′) yielding 26, 27, and 23 fragments, respectively. The chromosomal restriction fragments were then separated by PFGE. By summing up the lengths of the fragments generated with each of the three enzymes, a genome size of 3082 +/- 20 kb was determined. To identify adjacentSwaI fragments, a genomic cosmid library ofC. glutamicum was screened for chromosomal inserts containingSwaI sites. Southern blots of the PFGE gels were hybridized with these linking clones to connect theSwaI fragments in their natural order. By this method, about 90% of the genome could be ordered into three contigs. Two of the remaining gaps were closed by cross-hybridization of blottedSwaI digests using as probesPacI andPmeI fragments isolated from PFGE gels. The last gap in the chromosomal map was closed by hybridization experiments using partialSwaI digestions, thereby proving the circularity of the chromosome. By hybridization of gene probes toSwaI fragments separated by PFGE about 30 genes, including rRNA operons, IS element and transposon insertions were localized on the physical map.  相似文献   

3.
The genome size and a partial physical and genetic map have been defined for the phage group II Staphylococcus aureus Ps55. The genome size was estimated to be 2,771 kb by pulsed-field gel electrophoresis (PFGE) using the restriction enzymes SmaI, CspI, and SgrAI. The Ps55 chromosome map was constructed by transduction of auxotrophic and cryptic transposon insertions, with known genetic and physical locations in S. aureus NCTC 8325, into the Ps55 background. PFGE and DNA hybridization analysis were used to detect the location of the transposon in Ps55. Ps55 restriction fragments were then ordered on the basis of genetic conservation between the two strains. Cloned DNA probes containing the lactose operon (lac) and genes encoding staphylococcal protein A (spa), gamma hemolysin (hlg), and coagulase (coa) were also located on the map by PFGE and hybridization analysis. This methodology enabled a direct comparison of chromosomal organization between NCTC 8325 and Ps55 strains. The chromosome size, gene order, and some of the restriction sites are conserved between the two phage group strains.  相似文献   

4.
Abstract A physical map of the chromosome of Campylobacter fetus subsp. fetus was constructed by using pulsed-field gel electrophoresis of restriction fragments generated by Sal I, Sma I and Not I. Digestion of the type strain ATCC 27374 with these restriction endonucleases resulted in generating 4–14 fragments. The order of the fragments was deduced from hybridization of these restriction fragments to Southern blots of pulsed-field gel electrophoresis gels generated by the other two enzymes. The estimated genome size was 1160 kb. The position of several homologous and heterologous genes was determined on the circular map. These included the 2.8-kb sapA gene, encoding the 97-kDa surface array protein. Three copies of ribosomal RNA genes for which the 16S, 23S and 5S rRNA appeared to be located in close proximity in each of the three regions. The RNA polymerase genes rpoA , rpoB , and rpoD were mapped and appeared to be situated close together in one region. The flagellin genes ( flaAB ) of C. jejuni and the gyrase genes gyrA and gyrB of C. perfringens and Bacillus subtilis , respectively, were used to identify the locations of flaAB , the gyrA and the gyrB genes on the ATCC 27374 chromosome.  相似文献   

5.
The genomic cleavage map of the type strain Fibrobacter succinogenes S85 was constructed. The restriction enzymes AscI, AvrII, FseI, NotI, and SfiI generated DNA fragments of suitable size distribution that could be resolved by pulsed-field gel electrophoresis (PFGE). An average genome size of 3.6 Mb was obtained by summing the total fragment sizes. The linkages between the 15 AscI fragments of the genome were determined by combining two approaches: isolation of linking clones and cross-hybridization of restriction fragments. The genome of F. succinogenes was found to be represented by the single circular DNA molecule. Southern hybridization with specific probes allowed the eight genetic markers to be located on the restriction map. The genome of this bacterium contains at least three rRNA operons. PFGE of the other three strains of F. succinogenes gave estimated genome sizes close to that of the type strain. However, RFLP patterns of these strains generated by AscI digestion are completely different. Pairwise comparison of the genomic fragment distribution between the type strain and the three isolates showed a similarity level in the region of 14.3% to 31.3%. No fragment common to all of these F. succinogenes strains could be detected by PFGE. A marked degree of genomic heterogeneity among members of this species makes genomic RFLP a highly discriminatory and useful molecular typing tool for population studies. Received: 23 October 1996 / Accepted: 31 December 1996  相似文献   

6.
Two strains of urease-positive thermophilic Campylobacter (UPTC), CF89–12 and CF89–14, which were identified as UPTC by biochemical characterization, were found for the first time in river water in the Far East, namely, in Japan. The biochemical characteristics were identical to those of strains described previously by Bolton and colleagues. Furthermore, these two strains were positive for arylsulphatase. Consequently, it was demonstrated that UPTC may possibly be differentiated phenotypically from Campylobacter lari by the arylsulphatase test, as well as urease and nalidixic acid tests. Analysis by pulsed-field gel electrophoresis (PFGE) after digestion with Apa I, Sal I and Sma I, which were found to produce distributions of DNA fragments to be suitable for analysis of the genomic DNA from the thermophilic Campylobacter , respectively, demonstrated that these three restriction enzymes produced distributions of a relatively limited number of genomic DNA fragments and also demonstrated that the PFGE profiles obtained with the three restriction enzymes were indistinguishable between the two strains, respectively. The PFGE analysis and conventional fixed-field agarose gel electrophoresis suggested that the both genomes were approximately 1862 kb in length. Even though the two isolates of UPTC were isolated from water in different rivers in Japan, the results suggested that a single strain. as opposed to two distinct strains, was isolated. PFGE profiles after digestion with Sal I and Sma I, respectively, were also demonstrated to be distinctly different among strains isolated in Japan and previously in Europe. This is the first example of the isolation of UPTC from natural sources in countries other than those in Europe.  相似文献   

7.
The SpeI/DpnI map of the 5.9 Mb Pseudomonas aeruginosa PAO (DSM 1707) genome was refined by two-dimensional (2D) pulsed-field gel electrophoresis techniques (PFGE) which allow the complete and consistent physical mapping of any bacterial genome of interest. Single restriction digests were repetitively separated by PFGE employing different pulse times and ramps in order to detect all bands with optimum resolution. Fragment order was evaluated from the pattern of 2D PFGE gels: 1. Partial-complete digestion. A partial restriction digest was separated in the first dimension, redigested to completion, and subsequently perpendicularly resolved in the second dimension. 2D-gel comparisons of the ethidium bromide stain of all fragments and of the autoradiogram of end-labeled partial digestion fragments was nearly sufficient for the construction of the macrorestriction map. 2. Reciprocal gels. A complete restriction digest with enzyme A was run in the first dimension, redigested with enzyme B, and separated in the second orthogonal direction. The order of restriction digests was reverse on the second gel. In case of two rare-cutters, fragments were visualized by ethidium bromide staining or hybridization with genomic DNA. If a frequent and a rare cutter were employed, linking fragments were identified by end-labeling of the first digest. 3. A few small fragments were isolated by preparative PFGE and used as a probe for Southern analysis.--38 SpeI and 15 DpnI fragments were positioned on the map. The zero point was relocated to the 'origin of replication'. The anonymous mapping techniques described herein are unbiased by repetitive DNA, unclonable genomic regions, unfavourable location of restriction sites, or cloning artifacts as frequently encountered in other top-down or bottom-up approaches.  相似文献   

8.
Staphylococcal enterotoxin A (SEA) is one of the major staphylococcal enterotoxins which may cause food-borne outbreaks. In order to investigate the difference in genomic types and to elucidate the most disseminated strains for enterotoxin A-producing strains of Staphylococcus aureus , a total of 60 SEA Staph. aureus strains isolated from food and clinical samples in Taiwan and 30 strains of the same enterotoxigenic type of strains obtained from geographically far distant locations were compared for their pulsed field gel electrophoresis (PFGE) patterns. The rare cutting endonuclease Sma I generated 10 distinct genome patterns for the 60 local SEA isolates and 15 and eight genome patterns, respectively, for the 20 and 10 SEA strains originally isolated from the USA and other countries. The local isolates are less diverse in genome patterns as compared to the US isolates. Of all these PFGE patterns, a certain pattern, such as pattern 3, is shared by the food and clinical isolates and the local and foreign isolates. Thus, although SEA Staph. aureus strains from geographically far distant locations showed considerable genetic diversity, PFGE pattern 3 strain might be one of the most disseminated strains.  相似文献   

9.
A combined physical and genetic map of theCorynebacterium glutamicum ATCC 13032 chromosome was constructed using pulsed-field gel electrophoresis (PFGE) and hybridizations with cloned gene probes. Total genomic DNA was digested with the meganucleasesSwaI (5-ATTTAAAT-3),PacI (5-TTAATTAA-3), andPmeI (5-GTTTAAAC-3) yielding 26, 27, and 23 fragments, respectively. The chromosomal restriction fragments were then separated by PFGE. By summing up the lengths of the fragments generated with each of the three enzymes, a genome size of 3082 +/- 20 kb was determined. To identify adjacentSwaI fragments, a genomic cosmid library ofC. glutamicum was screened for chromosomal inserts containingSwaI sites. Southern blots of the PFGE gels were hybridized with these linking clones to connect theSwaI fragments in their natural order. By this method, about 90% of the genome could be ordered into three contigs. Two of the remaining gaps were closed by cross-hybridization of blottedSwaI digests using as probesPacI andPmeI fragments isolated from PFGE gels. The last gap in the chromosomal map was closed by hybridization experiments using partialSwaI digestions, thereby proving the circularity of the chromosome. By hybridization of gene probes toSwaI fragments separated by PFGE about 30 genes, including rRNA operons, IS element and transposon insertions were localized on the physical map.  相似文献   

10.
Ribonuclease III cleaves the genome RNA of vesicular stomatitis virus (VSV) to yield an array of fragments which range in size from 3.5 to 0.1 x 10(6) daltons under partial digestion conditions. The locations of the RNase III cleavage sites which give rise to these fragments have been ordered relative to the 3' end of the virion RNA by digestion of 3' end-labeled RNA. Based on a map of the cleavage sites we predicted that fragments having the same size could be generated which contain information from each gene. Annealing of individual VSV mRNA probes to Northern blots of the separated RNase III-generated fragments confirmed that fragments having the same size are, in fact, generated which contain information from each coding region of the VSV genome. Analysis of maps of partial digestion products indicates that fragments having the same size arise repeatedly along the 3' half of the genome. The cleavage of VSV RNA by RNase III can be detected only if the nuclease treated molecules are denatured. This suggest that the structure features in VSV RNA which signal cleavage involve areas of higher order RNA structure.  相似文献   

11.
Thirty Leuconostoc oenos strains, representing 28 different isolates, were distributed into 20 genomic groups according to PFGE patterns of restriction digests. The 8 bp-specific enzymes Sfi I, Not I and Asc I cleaved the Leuc. oenos DNA in a mean of 17, 11 and four fragments respectively and Sma I produced more than 50 fragments per genome. The strain differentiating capacity of the four enzymes was similar; only two related genomic groups failed to be distinguished by Asc I or Not I. Genomic relationships between Leuc. oenos strains were quantified by numerical analysis of Not I and Sfi I banding patterns. More than half of the strains, including the starters ML34 and PSU-1, formed a major cluster. The average size of the Leuc. oenos genome was estimated as 1.86 Mb. Although similar values were obtained for the genomes of Leuc. mesenteroides, Leuc. pseudomesenteroides, Leuc. gelidum and Leuc. citreum, a significant divergence between wine and non-wine species was inferred from comparisons of genome cleavage frequencies, determined with five different enzymes.  相似文献   

12.
Pulsed-field gel electrophoresis was used to determine the chromosomal size of three different strains of Enterococcus faecalis and one strain of Enterococcus faecium. The size determinations of OG1X, a strain of E. faecalis widely used in many laboratories for genetic studies, using Sma I, Not I, and Sfi I alone or in combination, ranged from 2,750 to 2,761 kb. Using the same enzymes as with OG1X, the size of HH-67, a plasmid-free clinical isolate of E. faecalis, was determined to be 2,170-2,288 kb and the size of JH2-2, an E. faecalis recipient strain, ranged from 2,008 to 2,135 kb. The size range generated for GE-1, a plasmid-free E. faecium strain, with the use of Sma I, Not I, and Apa I was 2,045-2,155 kb. Although OG1X differed in size from the other three enterococci, each individual enterococcal strain generated reproducible results in different experiments. However, for both E. faecalis OG1X and E. faecium GE-1, one of the enzymes used generated a considerably smaller molecular size than that generated by the other two enzymes. The discrepancy was due to visually undiscernible comigrating fragments, and serves to point out a potential source of error if fewer than two enzymes are used to size a genome. The size discrepancies were resolved by digesting individual fragments with a second enzyme. The molecular sizes of these enterococcal strains are larger than that recently reported for Campylobacter, smaller than that of Escherichia coli and Pseudomonas aeruginosa, and similar (OG1X) or smaller (JH2-2, HH67, and GE-1) than the 2,819-kb reported for Streptococcus mutans.  相似文献   

13.
We report the construction of a physical map of the Mycoplasma gallisepticum S6 genome by field-inversion gel electrophoresis of DNA fragments generated by digestion of genomic DNA with rare-cutting restriction endonucleases. The size of the M. gallisepticum S6 genome was calculated to be approximately 1,054 kb. The loci of several genes have been assigned to the map by Southern hybridization utilizing specific gene probes.  相似文献   

14.
Smith SI  Olukoya DK  Fox AJ  Coker AO 《Cytobios》2000,103(403):91-101
Genomic DNA from 58 strains of Campylobacter made up of 48 Campylobacter jejuni and ten Campylobacter coli were digested with Sma I and analysed by pulsed-field gel electrophoresis (PFGE). The cleavage of DNA by Sma I gave 22 distinct hybridization patterns. The two Campylobacter species were subtyped by PFGE. The average genomic size for C. jejuni by Sma I digestion was 1.73 Mb, while that of C. coli gave 1.7 Mb. Results from this study indicate that PFGE analysis by Sma I digested genomic DNA provides a reliable means of differentiating between and within species of Campylobacter and provides a practical approach to epidemiological studies of Campylobacter.  相似文献   

15.
Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.  相似文献   

16.
B G Cocks  L E Pyle    L R Finch 《Nucleic acids research》1989,17(16):6713-6719
A physical map is presented for the 900 kilobase pair genome of Ureaplasma urealyticum 960T, locating 29 sites for 6 restriction endonucleases. The large restriction fragments were separated and sized by pulsed-field agarose gel electrophoresis (PFGE). Their locations on the map were determined by probing Southern blots of digests with individual fragments isolated from other digests and by correlating the products of double digestions and partial digestions. An end-labelling technique was used to detect small fragments not readily observed by PFGE. Two loci for rRNA genes have been determined by probing with cloned DNA.  相似文献   

17.
Physical maps for Frankia strains CcI3, EAN1pec and EuI1c chromosomes were constructed by the use of macrorestriction analysis and pulsed-field gel electrophoresis (PFGE). The restriction enzymes Ase I, Pme I, Swa I and Ssp I were used to cut the Frankia chromosome into a limited number of large fragments and for double digestions. The genomes sizes, as determined by the addition of the estimated fragment sizes, were 5430 ± 35 kb, 9101 ± 109 kb and 8105 ± 842 kb for strains CcI3, EAN1pec and EuI1c, respectively. A complete physical map was achieved by the analysis of PFGE for the single and double digestions and by two-dimensional PFGE to determine doublets and overlapping fragments. For strain EuI1c, a partial genetic map was also constructed by positioning the 16S rRNA, gln II, gln A and hbo O genes on the physical map. PFGE analysis of DNA with and without proteinase K treatment together with the other results suggested a circular genome.  相似文献   

18.
Z Huang  J H Jett  R A Keller 《Cytometry》1999,35(2):169-175
BACKGROUND: A flow cytometry-based, ultrasensitive fluorescence detection technique has been developed that demonstrates unique advantages in the analysis of large DNA fragments over the currently most widely used technology, pulsed-field gel electrophoresis (PFGE). The technique described herein is used to characterize the restriction fingerprints of the bacteria genome Staphylococcus aureus in this study. METHODS: The isolation of the bacterial genomic DNA and the subsequent complete digestion by a restriction endonuclease were performed inside an agarose plug. Electroelution was used to move the DNA fragments out-of the agarose plug into a solution containing low concentrations of spermine and spermidine, added to stabilize the large DNA fragments. DNA was stained with the bisintercalating dye thiazole orange homodimer (TOTO-1) and subsequently introduced into our ultrasensitive flow cytometer from a capillary. RESULTS: Individual DNA fragments up to 351 kbp were successfully handled and sized. The histograms of the burst sizes were generated from signals associated with individual fragments in <7 min with <2 pg of DNA. The sizing accuracy was better than 98%. In contrast, standard PFGE takes approximately 20 h and requires approximately 1 microg of DNA with a sizing accuracy of approximately 90%. CONCLUSIONS: With the demonstrated success and advantages, our approach has the potential of being applied to fast, accurate bacteria species and strain identification.  相似文献   

19.
A combined physical and genetic map of the Pseudomonas putida KT2440 genome was constructed from data obtained by pulsed-field gel electrophoresis techniques (PFGE) and Southern hybridization. Circular genome size was estimated at 6.0 Mb by adding the sizes of 19 SwaI, 9 PmeI, 6 PacI, and 6 I-CeuI fragments. A complete physical map was achieved by combining the results of (i) analysis of PFGE of the DNA fragments resulting from digestion of the whole genome with PmeI, SwaI, I-CeuI, and PacI as well as double digestion with combinations of these enzymes and (ii) Southern hybridization analysis of the whole wild-type genome digested with different enzymes and hybridized against a series of probes obtained as cloned genes from different pseudomonads of rRNA group I and Escherichia coli, as P. putida DNA obtained by PCR amplification based on sequences deposited at the GenBank database, and by labeling of macrorestriction fragments of the P. putida genome eluted from agarose gels. As an alternative, 10 random mini-Tn5-Km mutants of P. putida KT2440 were used as a source of DNA, and the band carrying the mini-Tn5 in each mutant was identified after PFGE of a series of complete chromosomal digestions and hybridization with the kanamycin resistance gene of the mini-Tn5 as a probe. We established a circular genome map with an average resolution of 160 kb. Among the 63 genes located on the genetic map were key markers such as oriC, 6 rrn loci (rnnA to -F), recA, ftsZ, rpoS, rpoD, rpoN, and gyrB; auxotrophic markers; and catabolic genes for the metabolism of aromatic compounds. The genetic map of P. putida KT2440 was compared to those of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens SBW25. The chromosomal backbone revealed some similarity in gene clustering among the three pseudomonads but differences in physical organization, probably as a result of intraspecific rearrangements.  相似文献   

20.
The chromosomal DNA of four strains of Gardnerella vaginaliswere digested with rare cutting restriction enzymes and analyzedby pulsed-field gel electrophoresis (PFGE). The four strainsstudied were two clinical isolates (GVP 004 & GVP 007) andtwo American Type Culture Collection strains (ATCC 14018 &ATCC 14019). The restriction enzyme SfiI generated two DNA fragmentsof about 0.6 Mb and 1.1 Mb in all four strains giving a G. vaginalisgenome size of about 1.7 Mb. A similar genome size was calculatedutilizing two more GC-rich sequence specific restriction endonucleases,NotI and AscI. When digested with AscI, the chromosomal DNAof all four strains gave rise to 11 to 12 DNA fragments rangingbetween 0.01 Mb to 0.43 Mb. DNA from the two clinical isolateswere digested by NotI (yielding 7 to 9 fragments), while theDNA from the two ATCC strains were resistant to NotI digestion.In contrast to the clinical isolates, DNA from the two ATCCstrains gave an identical profile for all restriction endonucleasestested. From double digestion experiments, the two SfiI sitescould be localized on two AscI fragments. From these PFGE studies,it is concluded that the G. vaginalis genome is a circular DNAthat ranges between 1.67 Mb and 1.72 Mb in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号