首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arg-Gly-Asp (RGD)-binding domain of GPIIb-IIIa has been localized in a fragment of the GPIIIa subunit that includes the sequence between amino acids 109 and 171. To examine, in a platelet membrane environment, the activated versus nonactivated status of this domain, we have produced a monoclonal antibody against a synthetic peptide (residues 109-128) located within the RGD-binding region on GPIIIa. This kappa-IgM, named AC7, was specific for GPIIIa peptide 109-128 and interacted only with activated platelets. Fibrinogen, RGDF peptide, and the fibrinogen phi chain decapeptide LGGAKQAGDV inhibited the binding of AC7 to ADP-stimulated platelets. AC7 IgM and "small fragments" inhibited fibrinogen binding and platelet aggregation in a dose-dependent fashion. Induction of AC7 binding by D33C, a monoclonal antibody recognizing the GPIIb 426-437 sequence and stimulating fibrinogen binding, indicated that the GPIIb 426-437 and the GPIIIa 109-128 sequences were both involved in a stimulation-dependent conformational modification of the receptor. AC7 was able to recognize beta subunits other than GPIIIa on leucocyte surfaces but only after cell fixation with glutaraldehyde. The results are consistent with the implication of the RGD-binding domain in receptor ligand interaction on the platelet surface and its conformational modification and exposure upon receptor induction.  相似文献   

2.
A peptide corresponding to the third helical region within the PrP(C) protein, from residues 198 to 218 (helix-3), was synthesised with and without the familial 210-Val to Ile Creutzfeldt-Jakob disease mutation. The NMR structure of PrP(C) predicts no global variation in stability for this mutation, indicating that local sequence rather than global structural factors are involved in the pathological effects of this mutation. 1H NMR analysis of peptides with and without this mutation indicated that it had no significant effect on local helical structure. Temperature denaturation studies monitored by CD showed that the mutation increased the helical content within this region (helical propensity), but did not stabilise the helix toward denaturation (helical stability). Aggregation data indicated that, in addition to increasing helical propensity, this mutation increased the aggregation propensity of this sequence. CD and NMR data indicate that helical interactions, stabilised by the Val-210-Ile mutation, may precede the formation of beta-sheet aggregates in this peptide sequence. Therefore, this pathological mutation probably does not facilitate PrP(C) to PrP(Sc) conversion by directly destabilising the helical structure of PrP(C), but may preferentially stabilise PrP(Sc) by facilitating beta-sheet formation within this sequence region of PrP. In addition, helical interactions between helix-3 in two or more PrP(C) molecules may promote conversion to PrP(Sc).  相似文献   

3.
A peptide corresponding to the third helical region within the PrPC protein, from residues 198 to 218 (helix-3), was synthesised with and without the familial 210-Val to Ile Creutzfeldt–Jakob disease mutation. The NMR structure of PrPC predicts no global variation in stability for this mutation, indicating that local sequence rather than global structural factors are involved in the pathological effects of this mutation. 1H NMR analysis of peptides with and without this mutation indicated that it had no significant effect on local helical structure. Temperature denaturation studies monitored by CD showed that the mutation increased the helical content within this region (helical propensity), but did not stabilise the helix toward denaturation (helical stability). Aggregation data indicated that, in addition to increasing helical propensity, this mutation increased the aggregation propensity of this sequence. CD and NMR data indicate that helical interactions, stabilised by the Val-210-Ile mutation, may precede the formation of β-sheet aggregates in this peptide sequence. Therefore, this pathological mutation probably does not facilitate PrPC to PrPSc conversion by directly destabilising the helical structure of PrPC, but may preferentially stabilise PrPSc by facilitating β-sheet formation within this sequence region of PrP. In addition, helical interactions between helix-3 in two or more PrPC molecules may promote conversion to PrPSc.  相似文献   

4.
The behavior of the cytolytic peptide fragment 828-848 (P828) from the carboxy-terminus of the envelope glycoprotein gp41 of HIV-1 in membranes was investigated by solid-state 2H NMR on P828 with the selectively deuterated isoleucines I3, I13, I16, and I20. The quadrupole splittings of the I3 side chain show significant sensitivity to the main phase-transition temperature of the lipid, consistent with partial penetration of the N-terminal peptide region into the hydrophobic core of the membrane. In contrast, the quadrupole splittings of I13, I16, and I20 are in agreement with a location of the C-terminal portion of the peptide near the lipid/water interface. The perturbation of the bilayer by the peptide was studied by 2H NMR on sn-1 chain deuterated 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine membranes. Peptide incorporation results in a significant reduction of lipid chain order toward the bilayer center, but only a modest reduction near the lipid glycerol. These observations suggest a penetration of the partially structured peptide backbone into the membrane/water interface region that reduces lateral packing density and decreases order in the hydrophobic core. In addition, the structure of the peptide was investigated free in water and bound to SDS micelles by high-resolution NMR. P828 is unstructured in water but exists in a flexible partially helical conformation when bound to negatively charged liposomes or micelles. The flexible helix covers the first 14 residues of the peptide, whereas the C-terminus of the peptide, where three of the six positively charged arginine residues are located, appears to be unstructured. The peptide-induced changes in lipid chain order profiles indicate that membrane curvature stress is the driving force for the cytolytic behavior of P828.  相似文献   

5.
The binding of fibrinogen to its platelet receptor, the glycoprotein IIb-IIIa complex, is mediated, in part, by an Arg-Gly-Asp (RGD) sequence within the fibrinogen A alpha chain. PAC1 is an IgM-kappa murine monoclonal antibody that binds to the platelet fibrinogen receptor, and its binding is inhibited by both fibrinogen and RGD-containing peptides. To identify the regions of PAC1 that interact with the fibrinogen receptor, we determined the mRNA sequences of PAC1 immunoglobulin heavy and light chain variable regions. Five out of the six complementarity-determining regions (CDRs) of PAC1 had entirely germline sequences with no regions of similarity to fibrinogen. However, CDR3 of the PAC1 heavy chain (H-CDR3) was very large and unique due to the insertion of a novel D region segment. H-CDR3 contained a sequence, Arg-Tyr-Asp (RYD), that, if present in the proper conformation, might behave like the RGD sequence in fibrinogen. A 21-residue synthetic peptide encompassing the H-CDR3 region inhibited fibrinogen-dependent platelet aggregation as well as the binding of PAC1 (Ki = 10 microM) and fibrinogen (Ki = 5 microM) to activated platelets. The RYD region of H-CDR3 appeared to be central to its function, because substitution of the tyrosine with glycine increased the inhibitory potency of the peptide by 10-fold, while replacing the tyrosine with D-alanine or inverting the RYD sequence sharply reduced the inhibitory potency. Thus, the linear sequence, RYD, within H-CDR3 of PAC1 appears to mimic the RGD receptor recognition sequence in fibrinogen. This type of immunologic approach could be useful in studying the structural basis of other receptor-ligand interactions.  相似文献   

6.
800 MHz NMR structure of the 28-residue peptide thymosin alpha-1 in 40% TFE/60% water (v/v) has been determined. Restrained molecular dynamic simulations with an explicit solvent box containing 40% TFE/60% TIP3P water (v/v) were used, in order to get the 3D model of the NMR structure. We found that the peptide adopts a structured conformation having two stable regions: an alpha-helix region from residues 14 to 26 and two double β-turns in the N-terminal twelve residues which form a distorted helical structure.  相似文献   

7.
Dike A  Cowsik SM 《Biophysical journal》2005,88(5):3592-3600
Scyliorhinin I, a linear decapeptide, is the only known tachykinin that shows high affinity for both NK-1 and NK-2 binding sites and low affinity for NK-3 binding sites. As a first step to understand the structure-activity relationship, we report the membrane-induced structure of scyliorhinin I with the aid of circular dichroism and 2D-(1)H NMR spectroscopy. Sequence specific resonance assignments of protons have been made from correlation spectroscopy (TOCSY, DQF-COSY) and NOESY spectroscopy. The interproton distance constraints and dihedral angle constraints have been utilized to generate a family of structures using DYANA. The superimposition of 20 final structures has been reported with backbone pairwise root mean-square deviation of 0.38 +/- 0.19 A. The results show that scyliorhinin I exists in a random coil state in aqueous environments, whereas helical conformation is induced toward the C-terminal region of the peptide (D4-M10) in the presence of dodecyl phosphocholine micelles. Analysis of NMR data is suggestive of the presence of a 3(10)-helix that is in equilibrium with an alpha-helix in this region from residue 4 to 10. An extended highly flexible N-terminus of scyliorhinin I displays some degree of order and a possible turn structure. Observed conformational features have been compared with respect to that of substance P and neurokinin A, which are endogenous agonists of NK-1 and NK-2 receptors, respectively.  相似文献   

8.
A peptide designed to form a homo-oligomeric transmembrane helical bundle was reconstituted into lipid bilayers and studied by using (2)H NMR (nuclear magnetic resonance) with magic angle spinning to confirm that the helical interface corresponds to the interface intended in the design. The peptide belongs to a family of model peptides derived from a membrane-solubilized version of the water-soluble coiled-coil GCN4-P1. The variant studied here contains two asparagines thought to engage in interhelical hydrogen bonding critical to the formation of a stable trimer. For the NMR studies, three different peptides were synthesized, each with one of three consecutive leucines in the transmembrane region deuterium labeled. Prior to NMR data collection, polarized infrared spectroscopy was used to establish that the peptides were reconstituted in lipid bilayers in a transmembrane helical conformation. The (2)H NMR line shapes of the three different peptides are consistent with a trimer structure formed by the designed peptide that is stabilized by inter-helical hydrogen bonding of asparagines at positions 7 and 14.  相似文献   

9.
The structural study of peptides belonging to the terminal domains of histone H1 can be considered as a step toward the understanding of the function of H1 in chromatin. The conformational properties of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), which belongs to the C-terminal domain of histone H1(o) (residues 99-121) and is adjacent to the central globular domain of the protein, were examined by means of 1H-NMR and circular dichroism. In aqueous solution, CH-1 behaved as a mainly unstructured peptide, although turn-like conformations in rapid equilibrium with the unfolded state could be present. Addition of trifluoroethanol resulted in a substantial increase of the helical content. The helical limits, as indicated by (i,i + 3) nuclear Overhauser effect (NOE) cross correlations and significant up-field conformational shifts of the C(alpha) protons, span from Pro100 to Val116, with Glu99 and Ala117 as N- and C-caps. A structure calculation performed on the basis of distance constraints derived from NOE cross peaks in 90% trifluoroethanol confirmed the helical structure of this region. The helical region has a marked amphipathic character, due to the location of all positively charged residues on one face of the helix and all the hydrophobic residues on the opposite face. The peptide has a TPKK motif at the C-terminus, following the alpha-helical region. The observed NOE connectivities suggest that the TPKK sequence adopts a type (I) beta-turn conformation, a sigma-turn conformation or a combination of both, in fast equilibrium with unfolded states. Sequences of the kind (S/T)P(K/R)(K/R) have been proposed as DNA binding motifs. The CH-1 peptide, thus, combines a positively charged amphipathic helix and a turn as potential DNA-binding motifs.  相似文献   

10.
MUC1 mucin is a large transmembrane glycoprotein, the extracellular domain of which is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is under-glycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above), as well as in the exposure of normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc) and TF (Gal beta1-3 GalNAc) carbohydrates. Here, we report the results of 1H NMR structural studies, natural abundance 13C NMR relaxation measurements and distance-restrained MD simulations designed to probe the structural and dynamical effects of Tn-glycosylation within the PDTRP core peptide epitope. Two synthetic peptides were studied: a nine-residue MUC1 peptide of the sequence, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6-Arg7-Pro8-Ala9, and a Tn-glycosylated version of this peptide, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6(alphaGalNAc)-Arg7-Pro8-Ala9. The results of these studies show that a type I beta-turn conformation is adopted by residues PDTR within the PDTRP region of the unglycosylated MUC1 sequence. The existence of a similar beta-turn within the PDTRP core peptide epitope of the under-glycosylated cancer-associated MUC1 mucin protein might explain the immunodominance of this region in vivo, as the presence of defined secondary structure within peptide epitope regions has been correlated with increased immunogenicity in other systems. Our results have also shown that Tn glycosylation at the central threonine within the PDTRP core epitope region shifts the conformational equilibrium away from the type I beta-turn conformation and toward a more rigid and extended state. The significance of these results are discussed in relation to the possible roles that peptide epitope secondary structure and glycosylation state may play in MUC1 tumor immunogenicity.  相似文献   

11.
It has been well established that phosphorylation is an important reaction for the regulation of protein functions. In the N-terminal domain of the alpha-chain of pig gastric H(+)/K(+)-ATPase, reversible sequential phosphorylation occurs at Tyr 10 and Tyr 7. In this study, we determined the structure of the peptide involving the residues from Gly 2 to Gly 34 of pig gastric H(+)/K(+)-ATPase and investigated the tyrosine phosphorylation-induced conformational change using CD and NMR experiments. The solution structure showed that the N-terminal fragment has a helical conformation, and the peptide adopted two alpha-helices in 50% trifluoroethanol (TFE) solvent, suggesting that the peptide has a high helical propensity under hydrophobic conditions. Furthermore, the CD and NMR data suggested that the structure of the N-terminal fragment becomes more disordered as a result of phosphorylation of Tyr 10. This conformational change induced by the phosphorylation of Tyr 10 might be an advantageous reaction for sequential phosphorylation and may be important for regulating the function of H(+)/K(+)-ATPase.  相似文献   

12.
The platelet integrin receptor alphaIIbbeta3 plays a critical role in thrombosis and haemostasis by mediating interactions between platelets and several ligands but primarily fibrinogen. It has been shown previously that the YMESRADR KLAEVGRVYLFL (313-332) sequence of the alphaIIb subunit plays an important role in platelet activation, fibrinogen binding and alphaIIbbeta3-mediated outside-in signalling. Furthermore, we recently showed that the 20-residue peptide (20-mer) alphaIIb 313-332, is a potent inhibitor of platelet aggregation and fibrinogen binding to alphaIIbbeta3, interacting with fibrinogen rather than the receptor. In an effort to determine the sequence and the minimum length required for the biological activity of the above 20-mer, we synthesized seven octapeptides, each overlapping by six residues, covering the entire sequence and studied their effect on platelet activation as well as fibrinogen binding to activated platelets. We show for the first time that octapeptides containing the RAD sequence are capable of inhibiting platelet aggregation and secretion as well as fibrinogen binding to the activated alphaIIbbeta3, possibly interacting with the ligand rather than the receptor. This suggests that the RAD sequence, common to all the inhibitory peptides, is critical for their biological activity. However, the presence of the YMES sequence, adjacent to RAD, significantly increases the peptide's biological potency. The development of such inhibitors derived from the 313-332 region of the alphaIIb subunit may be advantageous against the RGD-like antagonists as they could inhibit platelet activation without interacting with alphaIIbbeta3, thus failing to further induce alphaIIbbeta3-mediated outside-in signalling.  相似文献   

13.
EmrE, a multidrug resistance protein from Escherichia coli, renders the bacterium resistant to a variety of cytotoxic drugs by active translocation out of the cell. The 110-residue sequence of EmrE limits the number of structural possibilities that can be envisioned for this membrane protein. Four helix bundle models have been considered [Yerushalmi, H., Lebendiker, M., and Schuldiner, S. (1996) J. Biol. Chem. 271, 31044-31048]. The validity of EmrE structural models has been probed experimentally by investigations on overlapping peptides (ranging in length from 19 to 27 residues), derived from the sequence of EmrE. The choice of peptides was made to provide sequences of two complete, predicted transmembrane helices (peptides H1 and H3) and two helix-loop-helix motifs (peptides A and B). Peptide (B) also corresponds to a putative hairpin in a speculative beta-barrel model, with the "Pro-Thr-Gly" segment forming a turn. Structure determination in SDS micelles using NMR indicates peptide H1 to be predominantly helical, with helix boundaries in the micellar environment corroborating predicted helical limits. Peptide A adopts a helix-loop-helix structure in SDS micelles, and peptide B was also largely helical in micellar environments. An analogue peptide, C, in which the central "Pro-Thr-Gly" was replaced by "(D)Pro-Gly" displays local turn conformation at the (D)Pro-Gly segment, but neither a continuous helical stretch nor beta-hairpin formation was observed. This study implies that the constraints of membrane and micellar environments largely direct the structure of transmembrane peptides and proteins and study of judiciously selected peptide fragments can prove useful in the structural elucidation of membrane proteins.  相似文献   

14.
The structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein (bPrPp) has been investigated by NMR spectroscopy in phospholipid membrane mimetic systems. CD spectroscopy revealed that the peptide adopts a largely alpha-helical structure in zwitterionic bicelles as well as in DHPC micelles but has a less degree of alpha-helix structure in partly charged bicelles. The solution structure of bPrPp was determined in DHPC micelles, and an alpha-helix was found between residues Ser8 and Ile21. The residues within the helical region show slow amide hydrogen exchange. Translational diffusion measurements in zwitterionic q = 0.5 bicelles show that the peptide does not induce aggregation of the bicelles. Increased quadrupolar splittings were observed in the outer part of the (2)H spectrum of DMPC in q = 3.5 bicelles, indicating that the peptide induces a certain degree of order in the bilayer. The amide hydrogen exchange and the (2)H NMR results are consistent with a slight positive hydrophobic mismatch and that bPrPp forms a stable helix that inserts in a transmembrane location in the bilayer. The structure of bPrPp and its position in the membrane may be relevant for the understanding of how the N-terminal (1-30) part of the bovine PrP functions as a cell-penetrating peptide. These findings may lead to a better understanding of how the prion protein accumulates at the membrane surface and also how the conversion into the scrapie form is carried out.  相似文献   

15.
The peptide alpha Ahx-Met-Ala-Asp-Pro-Asn-Arg-Phe-Arg-Gly-Lys-Asp-Leu-Pro-Val-Leu- Asp-Gln-Leu-Thr-Asp-Pro-Pro-alpha Ahx (epsilon Ahx = 6-aminohexanoyl), the antigenic sequence 11-32 from Herpes simplex virus glycoprotein D-1, has been synthesised. Its 1H-NMR spectrum has been assigned by a combination of two-dimensional techniques in H2O and 2H2O. Its secondary structure has been defined by nuclear Overhauser effects and amide proton exchange rates, and also to some extent chemical shifts, coupling constants and amide proton temperature coefficients. These latter parameters are shown to be less reliable as guides to secondary structure. The peptide has a helical (type I/III) turn at residues Pro-14-Asn-15 and helical structure at residues Lys-20-Val-24, in rapid equilibrium with random-coil structure. A beta-turn at residues Arg-18-Gly-19 may be present as a minor component. These locations of secondary structure correspond with previously determined regions of antigenic activity.  相似文献   

16.
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (Nalpha-Fmoc-Ser-[Ac4-beta-D-Gal-(1,3)-Ac2-alpha-D-GalN3+ ++]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D 1H NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, CalphaH chemical shift perturbations, 3JNH:CalphaH couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.  相似文献   

17.
Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membrane interaction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15 +/- 3 degrees in POPC, whereas in DMPC, 25 +/- 3 degree and 30 +/- 3 degree tilts were observed for SA and SKP peptides, respectively. These results are in good agreement with molecular dynamics simulations, which predict a tilt angle of 13.3 degrees (SA in POPC), 16.4 degrees (SKP in POPC), 22.3 degrees (SA in DMPC), and 31.7 degrees (SKP in DMPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in bilayer thickness without changing the phase, order, and structure of the lipid bilayers.  相似文献   

18.
We have determined the solution structure of rSS3, a recombinant form of the type I shorthorn sculpin antifreeze protein (AFP), at 278 and 268 K. This AFP contains an unusual sequence of N-terminal residues, together with two of the 11-residue repeats that are characteristic of the type I winter flounder AFP. The solution conformation of the N-terminal region of the sculpin AFP has been assumed to be the critical factor that results in recognition of different ice planes by the sculpin and flounder AFPs. At 278 K, the two repeats units (residues 11-20 and 21-32) in rSS3 form a continuous alpha-helix, with the residues 30-33 in the second repeat somewhat less well defined. Within the N-terminal region, residues 2-6 are well defined and helical and linked to the main helix by a more flexible region comprising residues A7-T11. At 268 K the AFP is overall more helical but retains the apparent hinge region. The helical conformation of the two repeats units is almost identical to the corresponding repeats in the type I winter flounder AFP. We also show that while tetracetylated rSS3 has antifreeze activity comparable to the natural AFP, its overall structure is the same as that of the unacetylated peptide. These data provide some insight into the structural determinants of antifreeze activity and should assist in the development of models that explain the recognition of different ice interfaces by the sculpin and flounder type I AFPs.  相似文献   

19.
T-cell adhesion is mediated by an ICAM-1/LFA-1 interaction; this interaction plays a crucial role in T-cell activation during immune response. LBE peptide, which is derived from the beta-subunit of LFA-1, has been shown to inhibit ICAM-1/LFA-1-mediated T-cell adhesion. In this work, we studied the solution conformations of LBE peptide and its reverse sequence (EBL) by NMR, CD and molecular dynamics simulations. Reverse peptides have been used as controls in biological studies. The effect of reversing the sequence of LBE to EBL peptides on their respective conformations is important in understanding their biological properties in vitro or in vivo. The NMR studies for these peptides were carried out in water and in TFE/water solvent systems. In 40% TFE/water, both peptides exhibited helical conformation. CD studies suggested that the LBE exhibits 30% helical conformation, while the EBL exhibits 20% helical conformation. From the NMR and MD simulation studies, it was evident that the peptides exhibited a stable helical conformation; a stable helical structure was found at Leu6 to Leu15 for LBE and at Gly9 to Leu17 for EBL. The helical conformations of LBE and EBL may be in equilibrium with other possible conformers; the other conformers contain loop and turn structures. Both peptides bind to divalent cations because the LBE is derived from the cation-binding region of the LFA-1. This study shows that reversing the peptide sequence did not alter the secondary structure of the corresponding sequence. Hence, caution must be exercised when using reverse peptides as controls in biological studies. This report will improve our ability to design a better inhibitor of ICAM-1/LFA-1 interaction.  相似文献   

20.
The solution structure of endothelin-1, a newly discovered potent bicyclic peptide vaso-constrictor agent, has been investigated using 1H NMR conformational constraints and distance geometry calculations. The conformation is constrained by two disulphide bridges between Cys1-Cys15 and Cys3-Cys11 but the NMR data and computed conformers show additional helical structure between residues Leu6 and Cys11. Our results are compared with previous conflicting reports on the solution conformation of this peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号