首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inheritance of pollen colour was studied in sunflower (Helianthus annuus L.) using three distinct pollen colour morphs: orange, yellow and white‐cream. Orange is the most common colour of sunflower pollen, while the yellow morph is less frequent. These two types were observed in the inbred lines F11 and EF2L, respectively. White‐cream pollen is a rare phenotype in nature, and was identified in a mutant, named white‐cream pollen, recovered in the R2 generation of an in vitro regenerated plant. The F11 inbred line was used as starting material for in vitro regeneration. The carotenoid content of these three pollen morphs differed, and was extremely reduced in white‐cream pollen. The phenotype of F1 populations obtained by reciprocal crosses revealed that the orange trait was dominant over both white‐cream and yellow. Segregation of F2 populations of both crosses, orange × yellow and orange × white‐cream, approached a 3:1 ratio, indicating the possibility of simple genetic control. By contrast, a complementation cross between the two lines with white‐cream and yellow pollen produced F1 plants with orange pollen. The F2 populations of this cross‐segregated as nine orange: four white‐cream: four yellow. A model conforming to the involvement of two unlinked genes, here designated Y and O, can explain these results. Accessions with yellow pollen would have the genotype YYoo, the white‐cream pollen mutant would have yyOO and the accession with orange pollen would have YYOO. Within F2 populations of the cross white‐cream × yellow a new genotype, yyoo, with white‐cream pollen was scored. The results of the cross yyoo × YYoo produced only F1 plants with yellow pollen, supporting a recessive epistatic model of inheritance between two loci. In this model, yy is epistatic on O and o. In F2 populations, the distributions of phenotypic classes suggested that the genetic control of carotenoid content is governed by major genes, with large effects segregating in a background of polygenic variation. These three pollen morphs can provide insight into the sequence in which genes act, as well into the biochemical pathway controlling carotenoid biosynthesis in anthers and the transfer of these different pigments into pollenkitt.  相似文献   

2.
The Arctic skua (Stercorarius parasiticus) is a classic example of an avian plumage polymorphism, with variation in melanin‐based ventral plumage coloration defining pale, intermediate and dark morphs in adults of both sexes. However, despite several decades of field research, there is an incomplete understanding of how the polymorphism in ventral plumage colour is maintained and the selective forces involved. Here, we investigate selection on a locus (MC1R) that is strongly associated with plumage colour variation in Arctic skuas using patterns of nucleotide variation and comparison to neutral loci (nuclear introns and mtDNA). We find that three linked nonsynonymous mutations in MC1R, including the single mutation described previously, are associated with plumage colour in the Arctic skua. The position of nonsynonymous mutations on a MC1R haplotype network implies that divergent selection drove the initial evolution of the colour morphs. Comparisons of FSTs of MC1R vs. nuclear introns among five skua populations differing in proportion of dark morphs along an approximate north–south cline reveal a signature of divergent selection on MC1R. In contrast, we find limited evidence for balancing selection on MC1R within populations, although the power is low. Our results provide strong evidence for both past and ongoing selection on MC1R, and, by implication, plumage colour in Arctic skuas. The results suggest that a fruitful avenue for future ecological studies will be analysis of selection on morphs in colonies at the extremes along the morph ratio cline.  相似文献   

3.
The New Zealand alpine flora displays a range of unusual characteristics compared with other alpine floras, in particular the high frequency of species with small white flowers. The presence of both white and bright purple flowers on the same plant in the New Zealand alpine annual creeping eyebright (Euphrasia dyeri Wettst.) provides an ideal opportunity to investigate the significance of flower colour in an environment where coloured flowers are rare. The relationships among flower age, gender phase, reward availability and petal colour were assessed in natural populations of E. dyeri. The effect of pollination on flower colour was tested using hand pollination of bagged flowers. Direct observations and videos of flowers were used to assess patterns of flower visitation by native and introduced pollinators. Unpollinated white E. dyeri flowers changed from white to purple within 6 days. However, pollination of white flowers triggered a significantly faster colour change, typically within 1–2 days. White flowers had receptive stigmas, large amounts of lipid‐rich pollen and small amounts of nectar, whereas stigmas of purple flowers are not receptive and flowers did not provide pollen or nectar rewards. Flowers were mainly visited by native syrphid flies. Both native syrphids and introduced Bombus bees showed a marked avoidance of purple flowers, tending to preferentially visit white flowers. Our study suggests that flower colour change from white to bright purple in E. dyeri functions to direct pollinators to rewarding, receptive flowers. As many Euphrasia L. species are described as having variably coloured flowers, this mechanism may be more widespread in the genus. Furthermore, our results add to the growing evidence that the dominance of white flowers in the New Zealand alpine is not simply due to a lack of colour discrimination among pollinators.  相似文献   

4.
Correlations between phenotypic traits are common in many organisms, but the relative importance of nonadaptive mechanisms and selection for the evolution and maintenance of such correlations are poorly understood. In polymorphic species, morphs may evolve quantitative differences in additional characters as a result of morph‐specific selection. The perennial rosette herb Primula farinosa is polymorphic for scape length. The short‐scaped morph is less damaged by grazers and seed predators but is more strongly pollen limited than the long‐scaped morph. We examined whether morph‐specific differences in biotic interactions are associated with differences in selection on two other traits affecting floral display (number of flowers and petal size) and on one trait likely to affect pollination efficiency (corolla tube width) in three P. farinosa populations. Differences in selection between morphs were detected in one population. In this population, selection for more flowers and larger petals was stronger in the short‐scaped than in the long‐scaped morph, and although there was selection for narrower corolla tubes in the short‐scaped morph, no statistically significant selection on corolla tube width could be detected in the long‐scaped morph. In the study populations, the short‐scaped morph produced more and larger flowers and wider corolla tubes. Current morph‐specific selection was thus only partly consistent with trait differences between morphs. The results provide evidence of morph‐specific selection on traits associated with floral display and pollination efficiency, respectively.  相似文献   

5.
Colour phenotypes are often involved in communication and are thus under selection by species interactions. However, selection may also act on colour through correlated traits or alternative functions of biochemical pigments. Such forms of selection are instrumental in maintaining petal colour diversity in plants. Pollen colour also varies markedly, but the maintenance of this variation is little understood. In Campanula americana, pollen ranges from white to dark purple, with darker morphs garnering more pollinator visits and exhibiting elevated pollen performance under heat stress. Here, we generate an F2 population segregating for pollen colour and measure correlations with floral traits, pollen attributes and plant‐level traits related to fitness. We determine the pigment biochemistry of colour variants and evaluate maternal and paternal fitness of light and dark morphs by crossing within and between morphs. Pollen colour was largely uncorrelated with floral traits (petal colour, size, nectar traits) suggesting it can evolve independently. Darker pollen grains were larger and had higher anthocyanin content (cyanidin and peonidin) which may explain why they outperform light pollen under heat stress. Overall, pollen‐related fitness metrics were greater for dark pollen, and dark pollen sires generated seeds with higher germination potential. Conversely, light pollen plants produce 61% more flowers than dark, and 18% more seeds per fruit, suggesting a seed production advantage. Results indicate that light and dark morphs may achieve fitness through different means—dark morphs appear to have a pollen advantage whereas light morphs have an ovule advantage—helping to explain the maintenance of pollen colour variation.  相似文献   

6.
Character displacement is a potentially important process driving trait evolution and species diversification. Floral traits may experience character displacement in response to pollinator‐mediated competition (ecological character displacement) or the risk of forming hybrids with reduced fitness (reproductive character displacement). We test these and alternative hypotheses to explain a yellow‐white petal color polymorphism in Leavenworthia stylosa, where yellow morphs are spatially associated with a white‐petaled congener (Leavenworthia exigua) that produces hybrids with complete pollen sterility. A reciprocal transplant experiment found limited evidence of local adaptation of yellow color morphs via increased survival and seed set. Pollinator observations revealed that Leavenworthia attract various pollinators that generally favor white petals and exhibit color constancy. Pollen limitation experiments showed that yellow petals do not alleviate competition for pollination. Interspecific pollinator movements were infrequent and low hybridization rates (~0.40–0.85%) were found in each morph, with natural rates likely being lower. Regardless, hybridization rates were significantly higher in white morphs of L. stylosa, yielding a small selection coefficient of s = 0.0042 against this phenotype in sympatry with L. exigua. These results provide support for RCD as a mechanism contributing to the pattern of petal color polymorphism in L. stylosa.  相似文献   

7.
Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an important group of pulse crops. The viral disease is transmitted through the white fly, Bemicia tabaci, and the yield of the plants is affected drastically. YMV-tolerant lines, generated from a single YMV-tolerant plant identified in the field within a large population of the susceptible cultivar T-9, were crossed with T-9, and F1, F2 and F3 progenies raised. The different generations were phenotyped for YMV-reaction by forced inoculation using viruliferous white flies. A monogenic recessive control of YMV-tolerance was revealed from the F2 segregation ratio of 3:1 (susceptible: tolerant), which was confirmed by the segregation ratio of the F3 families. Of 24 pairs of resistance gene analog (RGA) primers screened, only one pair, RGA 1F-CG/RGA 1R, was found to be polymorphic among the parents. Selected F2 individuals and F3 families were genotyped with the polymorphic RGA primer pair and the polymorphism was found to be linked with YMV-reaction. This primer pair amplified a 445bp DNA fragment only from homozygous tolerant and the heterozygous lines. The 445bp marker band was sequenced and named 'VMYR1'. The predicted amino acid sequence showed highly significant homology with the NB-ARC domain present in several gene products involved in plant disease resistance, nematode cell death and human apoptotic signaling. To the best of our knowledge, this is the first report of YMV-resistance linked DNA marker development in any crop species using segregating populations. This YMV-resistance linked marker is of potential commercial importance in resistance breeding of plants.  相似文献   

8.
Fruit of the domestic tomato (Lycopersicon esculentum Mill.) accumulate soluble sugars primarily in the form of the hexoses, glucose and fructose. In contrast, the predominant sugar in fruit of the wild tomato relative, L. chmielewskii, is sucrose. In the present study, the inheritance and linkage relations of sucrose accumulation were examined in interspecific L. esculentum x L. chmielewskii populations. In backcrosses to either the wild or domestic tomato, segregation for sucrose accumulation permitted qualitative analysis of the trait and indicated monogenic recessive control, although deviations from Mendelian inheritance were observed in some populations. This major gene, designated sucr, was mapped in F2, F3, and BC1F2 populations using a set of 95 informative RFLP and isozyme markers covering the tomato genome. A map location near the centromere of chromosome 3 was established, with tight linkage to the genomic clone TG102. Association of sucrose accumulation with yellow fruit, encoded by an allele of the r gene, permitted alignment with the classical map, thereby confirming the map location of sucr. A linkage map of the region surrounding sucr was obtained by monitoring recombination between flanking markers in the back-crosses to tomato. A cDNA clone of tomato fruit acid invertase, TIV1, was mapped to TG102 and sucr, with no recombination between the two RFLP markers observed in over 1700 meiotic products. Despite the tight linkage, TG102 and TIV1 hybridize to distinct restriction fragments, hence do not represent the same gene. The genetic data strongly suggest that sucr is an allele of the invertase gene and thus support previous biochemical studies that demonstrated low invertase activity in sucrose-accumulating fruit. L. hisutum, another low-invertase, sucrose-accumulating species, was hybridized with L. chmielewskii and the resulting F1 plants accumulated sucrose, indicating that genetic control of soluble sugar composition is conserved in these two species.  相似文献   

9.
Lizards are ideal for studying colour polymorphism, because some species are polymorphic and the morphs often have different ecological or reproductive strategies. We studied the feeding habits of six polymorphic populations of Podarcis muralis to test whether morphs differed in their diet. Some taxa were selected in a similar way by all morphs, but selection on other taxa varied and was characteristic of each morph. Diet was most different for the red and yellow morphs. Two hypotheses could explain these differences: active segregation in the trophic niche or active segregation in space dependent on spatial heterogeneity in prey availability. The former is improbable because P. muralis is considered an opportunistic feeder, whereas the latter could occur if the morphs adopted alternative territorial strategies with consequent spatial segregation.  相似文献   

10.
11.
  • Crop wild relatives can be a useful source of genotypes that maximise crop survival and yield in specific habitats. Lupinus angustifolius is an annual forb with crop varieties derived from a narrow genetic basis but that are cultivated worldwide. Its seeds have high nutritional value, but they naturally contain alkaloids with anti‐nutritive factors. The study of its wild populations can be useful to find genotypes that contribute to higher climate resilience and greater yield under stressing environmental conditions.
  • Using a common garden, we evaluated ecotypic differentiation in four natural populations from two contrasting latitudes in terms of plant biomass, seed mass and number, alkaloid content in seeds for the three main alkaloids present in the plant and seed colour, including its possible influence on post‐dispersal predation. Correlations among traits were also assessed.
  • We found differences among populations for all traits except final biomass. Northern populations had lighter seeds and a tendency to yield more seeds when they produced white seeds, compared to southern populations and variegated seeds. Regardless of latitude, populations showed differences in alkaloid concentration, with all three alkaloids found generally in high or low concentrations in each population. Proportion of white seed morphs varied in each population. Seed colour did not influence predator preference. In addition, white seed colour was related to a low alkaloid content.
  • Our results evidence the existence of natural ecotypic differentiation in L. angustifolius not only due to latitudinal range, but also to local environmental factors. White seed coat colour could be used as a visual clue for identification of low‐alkaloid genotypes, a priority trait in L. angustifolius breeding programmes.
  相似文献   

12.
13.
I am writing in response to an article by Bolton, Rollins and Griffith (2015) entitled ‘The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species’ that was recently published as an Opinion under the NEWS AND VIEWS section in Molecular Ecology. Bolton et al. (Molecular Ecology, 2015, 24 , 2907) argue that colour polymorphism may reduce population fitness and increase extinction risk and emphasize that this is contrary to predictions put forward by Forsman et al. (Ecology, 89 , 2008, 34) and Wennersten & Forsman (Biological Reviews 87 , 2012, 756) that the existence of multiple colour morphs with co‐adapted gene complexes and associated trait values may increase the ecological and evolutionary success of polymorphic populations and species. Bolton et al. (Molecular Ecology, 2015, 24 , 2907) further state that there is no clear evidence from studies of ‘true polymorphic species’ that polymorphism promotes population persistence. In response, I (i) challenge their classifications of polymorphisms and revisit the traditional definitions recognizing the dynamic nature of polymorphisms, (ii) review empirical studies that have examined whether and how polymorphism is associated with extinction risk, (iii) discuss the roles of trait correlations between colour pattern and other phenotypic dimensions for population fitness and (iv) highlight that the causes and mechanisms that influence the composition and maintenance of polymorphisms are different from the consequences of the polymorphic condition and how it may impact on aspects of ecological success and long‐term persistence of populations and species.  相似文献   

14.
While large‐scale genomic approaches are increasingly revealing the genetic basis of polymorphic phenotypes such as colour morphs, such approaches are almost exclusively conducted in species with high‐quality genomes and annotations. Here, we use Pool‐Seq data for both genome assembly and SNP frequency estimation, followed by scanning for FST outliers to identify divergent genomic regions. Using paired‐end, short‐read sequencing data from two groups of individuals expressing divergent phenotypes, we generate a de novo rough‐draft genome, identify SNPs and calculate genomewide FST differences between phenotypic groups. As genomes generated by Pool‐Seq data are highly fragmented, we also present an approach for super‐scaffolding contigs using existing protein‐coding data sets. Using this approach, we reanalysed genomic data from two recent studies of birds and butterflies investigating colour pattern variation and replicated their core findings, demonstrating the accuracy and power of a Pool‐Seq‐only approach. Additionally, we discovered new regions of high divergence and new annotations that together suggest novel parallels between birds and butterflies in the origins of their colour pattern variation.  相似文献   

15.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

16.

Background and Aims

Organisms may be polymorphic within natural populations, but often the significance and genetic background to such polymorphism is not known. To understand the colour polymorphism expressed in the diploid marsh-orchids Dactylorhiza incarnata, morphological, habitat and genetic differentiation was studied in mixed populations on the island of Gotland, supplemented with genetic marker data from adjacent areas.

Methods

A total of 398 accessions was investigated for plastid haplotype and three nuclear microsatellites. Morphometric data and vegetation data were obtained from a subset of 104 plants.

Key Results

No clear pattern of habitat differentiation was found among the colour morphs. Within sites, the yellow-flowered morph (ochroleuca) was slightly larger than the others in some flower characters, whereas the purple-flowered morph with spotted leaves (cruenta) was on average smaller. However, populations of the same colour morph differed considerably between sites, and there was also considerable overlap between morphs. Morphs were often genetically differentiated but imperfectly separated within sites. Most populations were characterized by significant levels of inbreeding. The ochroleuca morph constitutes a coherent, highly homozygous sublineage, although introgression from purple-flowered morphs occurs at some sites. The cruenta morph was genetically variable, although Gotland populations formed a coherent group. Purple-flowered plants with unspotted leaves (incarnata in the strict sense) were even more variable and spanned the entire genetic diversity seen in the other morphs.

Conclusions

Colour polymorphism in D. incarnata is maintained by inbreeding, but possibly also by other ecological factors. The yellow-flowered morph may best be recognized as a variety of D. incarnata, var. ochroleuca, and the lack of anthocyanins is probably due to a particular recessive allele in homozygous form. Presence of spotted leaves is an uncertain taxonomic character, and genetic differentiation within D. incarnata would be better described by other morphological characters such as leaf shape and stature and size and shape of lip and spur.Key words: Dactylorhiza incarnata, cruenta, ecology, genetic differentiation, Gotland, microsatellites, ochroleuca, plastid DNA, polymorphism  相似文献   

17.
Giant wood spiders, Nephila maculata (Fabricius 1793), typically have a greenish cephalothorax and a dark abdomen decorated with striking yellow bands and spots. However, in Taiwan and neighbouring coastal islands we also found some morphologically indistinguishable individuals that were totally dark. As insects are attracted to ultraviolet (UV) light, we compared the UV reflectance property and insect-catching ability of the two morphs to see whether variation in colour affected foraging success. We also examined the population genetic structure to estimate indirectly the level of gene flow between these two colour morphs. Body surface UV reflection rate was measured from six areas of the spider with a spectrometer. To compare the insect-catching ability of different morphs, we recorded the spiders' body colour, orb size and insect-interception rates. The typical morph of N. maculata reflected significantly more UV in four of the six areas examined and caught significantly more insects than the melanic morph. We estimated population genetic structure by allozyme electrophoresis, using 20 loci from 17 enzymes. The population differentiation index (FST) derived from all eight polymorphic loci was 0.023, indicating a minimum level of genetic differentiation. These results indicate that the two morphs ofN. maculata may be members of an interbreeding population, and melanics have lower foraging success because of a lower body surface reflectance.  相似文献   

18.
If alternative phenotypes in polymorphic populations do not mate randomly, they can be used as model systems to study adaptive diversification and possibly the early stages of sympatric speciation. In this case, non random mating is expected to support genetic divergence among the different phenotypes. In the present study, we use population genetic analyses to test putatively neutral genetic divergence (of microsatellite loci) among three colour morphs of the lizard Podarcis melisellensis, which is associated with differences in male morphology, performance and behaviour. We found weak evidence of genetic divergence, indicating that gene flow is somewhat restricted among morphs and suggesting possible adaptive diversification.  相似文献   

19.
The shell color of the Pacific oyster (Crassostrea gigas) is a desirable trait, but only a few genetic studies on shell color have been documented. Through successive selective breeding, four shell color variants of white (W), gold (G), black (B) and purple (P) C. gigas have been developed. The amplified fragment length polymorphism (AFLP) technique was used to scan the genomes of the four variants with different shell colors and one wild population (C) to identify candidate markers for shell polymorphism. Fifteen AFLP primer combinations were used, 1079 loci were scored as polymorphic loci, and the percentage of polymorphic bands was 95.5%. In the gold, white, black, purple and wild populations, the percentages of polymorphic loci were estimated to be 90.5% (G), 90.0% (W), 91.1% (B), 95.3% (P) and 93.2% (C); the expected heterozygosity values were 0.3115 (G), 0.3044 (W), 0.3102 (B), 0.3285 (P) and 0.3105 (C). The white shell variant was observed to have slightly lower genetic diversity than others, with a FST value of 0.1483. These results indicated that the four different shell color variants had high genetic diversity and that the genetic differentiation of populations mostly results from genetic diversity of individuals within populations. Furthermore, 11 outlier loci were considered candidate markers for shell color. This work provides new insights on relationships among color variants of C. gigas.  相似文献   

20.
Isozyme variability was examined in 13 geographically isolated populations of the endemic arctic hairy lousewort (Pedicularis dasyantha) in the Svalbard Archipelago, 80° N latitude, Norway. Of the 23 enzyme systems screened on five buffer systems 18 were interpretable. Of the 31 reliable loci, only 6-phosphogluconate dehydrogenase (6-Pgd), was polymorphic. However, no heterozygotes were detected. Frequencies for allele 1 among the populations varied from 1.00 in the north to 0.00 in the south and 0.53 in the central “overlap” region. At the species level the mean number of alleles per locus (A) was 1.03. Percentage of polymorphic loci (P) was 3%. Expected heterozygosity (He) was 0.016. At the population level the mean number of alleles per locus was 1.01, and 1.1% of the loci were polymorphic. He was 0.004. These values are low compared to endemic, widespread, selling, and outcrossed species. Flower color morphs were distinct. They varied within and among the 13 populations. The frequency of color morphs coincided with allele frequencies of 6-PGD: allele 1 was found in dark purple morphs, and allele 2 was found in light morphs. This species shows more isozyme genetic variability than the five other species reported in the genus but generally less variation than other species with limited regional distributions. Low-level genetic variation in this diploid species may be a result of colonization events coupled with genetic drift, founder effects, and strong natural selection. Additional factors include the self-compatible reproductive system and the long-lived perennial habit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号