首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Microbial biomass and community structure in paddy rice soil during the vegetation period of rice were estimated by analysis of their phospholipid fatty acids (PLFA), hydroxy fatty acids of lipopolysaccharides (LPS-HYFA), and phospholipid ether lipids (PLEL) directly extracted from the soil. A clear change in the composition of the community structure at different sampling periods was observed, indicated by the principal component analysis of the PLFA. A dramatic decline of ester-linked PLFA was observed in the soil samples taken at the second sampling time. In contrast to the ester-linked PLFA, the non-ester-linked PLFA composition did not change. The hydroxy fatty acids of lipopolysaccharides as well as ether lipids decreased consecutively during the observation period. Total microbial abundance was estimated to be (4.1–7.3) × 109 cells g-1 soil (dry weight). About 44% account for aerobic and 32% for facultative anaerobic bacteria, and 24% for archaea, on average. According to the profile and patterns of PLFA in the soil sample, it may be suggested that the paddy soil at the August sampling period contained more abundant facultative anaerobic bacteria (ca. 36%) and archaea (ca. 37%), but the total microbial biomass was significantly lower than in the remaining sampling periods. As the plant approached maturity, the microbial community structure in the soil changed to contain more abundant Gram-negative bacteria and methanotrophs. Received: 23 September 1999; Accepted: 28 February 2000; Online Publication: 12 May 2000  相似文献   

2.
Twenty-eight sediment samples collected from Osaka Bay, Japan, were analyzed for phospholipid ester-linked fatty acids (PLFA) to determine regional differences in microbial community structure of the bay. The abundance of three major groups of C10 to C19 PLFA (saturated, branched, and monounsaturated PLFA), which accounted for 84 to 97% of the total PLFA, indicated the predominance of prokaryotes in the sediment. The distribution of six clusters obtained by similarity analysis in the bay revealed a marked regional distribution in the PLFA profiles. Total PLFA concentrations (0.56 to 2.97 μg/g [dry weight] of the sediment) in sediments also showed marked variation among the stations, with higher concentrations of total PLFA in the central part of the bay. The biomass, calculated on the basis of total PLFA concentration, ranged from 0.25 × 108 to 1.35 × 108 cells per g (dry weight) of the sediment. The relative dominance of microbial groups in sediments was described by using the reported bacterial biomarker fatty acids. Very small amounts of the characteristic PLFA of microeukaryotes in sediments indicated the restricted distribution of microeukaryotes. By examining the distribution of clusters and groups of microorganisms in the bay, there were two characteristics of the distribution pattern: (i) the predominance of anaerobic bacteria and gram-positive prokaryotes, characterized by the high proportions of branched PLFA in the eastern and northeastern sides of the bay, where the reported concentrations of pollutants were also high, and (ii) the predominance of aerobic prokaryotes and eukaryotes, except for a few stations, in the western and southwestern sides of the bay, as evidenced by the large amounts of monounsaturated PLFA. Such significant regional differences in microbial community structure of the bay indicate shifts in microbial community structure.  相似文献   

3.
Ester-linked phospholipid fatty acid (PLFA) profiles of a Pseudomonas aureofaciens strain and an Arthrobacter protophormiae strain, each isolated from a subsurface sediment, were quantified in a starvation experiment in a silica sand porous medium under moist and dry conditions. Washed cells were added to sand microcosms and maintained under saturated conditions or subjected to desiccation by slow drying over a period of 16 days to final water potentials of approximately - 7.5 MPa for the P. aureofaciens and - 15 MPa for the A. protophormiae. In a third treatment, cells were added to saturated microcosms along with organic nutrients and maintained under saturated conditions. The numbers of culturable cells of both bacterial strains declined to below detection level within 16 days in both the moist and dried nutrient-deprived conditions, while direct counts and total PLFAs remained relatively constant. Both strains of bacteria maintained culturability in the nutrient-amended microcosms. The dried P. aureofaciens cells showed changes in PLFA profiles that are typically associated with stressed gram-negative cells, i.e., increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl fatty acids to their monoenoic precursors. P. aureofaciens starved under moist conditions showed few changes in PLFA profiles during the 16-day incubation, whereas cells incubated in the presence of nutrients showed decreases in the ratios of both saturated fatty acids to unsaturated fatty acids and cyclopropyl fatty acids to their monoenoic precursors. The PLFA profiles of A. protophormiae changed very little in response to either nutrient deprivation or desiccation. Diglyceride fatty acids, which have been proposed to be indicators of dead or lysed cells, remained relatively constant throughout the experiment. Only the A. protophormiae desiccated for 16 days showed an increase in the ratio of diglyceride fatty acids to PLFAs. The results of this laboratory experiment can be useful for interpreting PLFA profiles of subsurface communities of microorganisms for the purpose of determining their physiological status.  相似文献   

4.
The changes in the structure and activity of a soil microbial community caused by addition of moderate and high rates of the mineral nitrogen fertilizer (KNO3) were studied in a laboratory incubation experiment. The structure of the microbial community was evaluated from the phospholipid fatty acid (PLFA) profile; specific growth rate of the microorganisms was determined by the method of the kinetics of substrate-induced respiration; the total pool of microbial carbon was estimated by the fumigation-extraction method. The amounts of nitrogen fertilizer applied in three treatments of the experiment were 0 (control), 100, and 2000 ??g N/g soil. Even in the absence of additional sources of organic carbon, a considerable portion of the added 15N (up to 74%) was immobilized. No significant increase in the amount of microbial carbon was observed during incubation. The specific growth rate of the microbial community in soil supplemented with glucose decreased twofold after addition of 2000 ??g N/g soil. In this treatment, the ratio of cyclic fatty acids to their monoenoic precursors also increased, indicating the adaptation of microbial cells to extremely high amounts of nitrogen fertilizer. Moreover, considerable changes in the structure of the soil microbial community, such as an increase in the ratio of fungalto bacterial markers and a decrease in the ratio between PLFA of gram-positive and gram-negative bacteria, were observed in the treatment with addition of 2000 ??g N/g soil. Our data clearly indicate that mineral nitrogen fertilization of soil under carbon limitation has a pronounced impact on the structure and activity of soil microbial communities.  相似文献   

5.
Abstract Phospholipid fatty acid (PLFA) profiles were measured in soils from organic, low-input, and conventional farming systems that are part of the long term Sustainable Agriculture Farming Systems (SAFS) Project. The farming systems differ in whether their source of fertilizer is mineral or organic, and in whether a winter cover crop is grown. Sustained increases in microbial biomass resulting from high organic matter inputs have been observed in the organic and low-input systems. PLFA profiles were compared to ascertain whether previously observed changes in biomass were accompanied by a change in the composition of the microbial community. In addition, the relative importance of environmental variables on PLFA profiles was determined. Redundancy analysis ordination showed that PLFA profiles from organic and conventional systems were significantly different from April to July. On ordination plots, PLFA profiles from the low-input system fell between organic and conventional systems on most sample dates. A group of fatty acids (i14:0, a15:0, 16:1ω7c, 16:1ω5c, 14:0, and 18:2ω6c) was enriched in the organic plots throughout the sampling period, and another group (10Me16:0, 2OH 16:1 and 10Me17:0) was consistently lower in relative abundance in the organic system. In addition, another group (15:0, a17:0, i16:0, 17:0, and 10Me18:0) was enriched over the short term in the organic plots after compost incorporation. The relative importance of various environmental variables in governing the composition of microbial communities could be ranked in the order: soil type > time > specific farming operation (e.g., cover crop incorporation or sidedressing with mineral fertilizer) > management system > spatial variation in the field. Measures of the microbial community and soil properties (including microbial biomass carbon and nitrogen, substrate induced respiration, basal respiration, potentially mineralizable nitrogen, soil nitrate and ammonium, and soil moisture) were seldom associated with the variation in the PLFA profiles. Received: 3 February 1997; Accepted: 7 August 1997  相似文献   

6.
Microbial mats are prokaryotic communities that provide model systems to analyze microbial diversity and ecophysiological interactions. Community diversity of microbial mat samples was assessed at 8:00 a.m. and 3:00 p.m. in a combined analysis consisting of 16S rRNA-denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) profiles. The divergence index determined from PLFA and DGGE data showed that depth-related differences have a greater influence on diversity than temporal variations. Shannon and Simpson indices yielded similar values in all samples, which suggested the stable maintenance of a structurally diverse microbial community. The increased diversity observed at 3:00 p.m. between 2.5 and 4 mm can be explained mainly by diversification of anaerobic microorganisms, especially sulfate-reducing bacteria. In the afternoon sampling, the diversity index reflected a higher diversity between 4 and 5.5 mm depth, which suggested an increase in the diversity of strict anaerobes and fermenters. The results are consistent with the conclusion that hypersaline microbial mats are characterized by high degree of diversity that shifts in response to the photobiological adaptations and metabolic status of the microbial community. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Dedicated to the memory of David C. White.  相似文献   

7.
Biological and physico-chemical characteristics of subglacial sediments were studied in Svalbard. Sediment from close proglacial and supraglacial environments was used for a comparison. Viable bacteria, cyanobacteria and microalgae were detected in subglacial sediments from two polythermal glaciers using epifluorescence microscopy and phospholipid fatty acid (PLFA) analyses. The subglacial samples were generally of higher pH values, coarser texture and lower water content, organic matter, organic carbon, and nitrogen compared to proglacial and supraglacial sediments). Bacterial counts of 1.6 × 107 cells mg− 1 OM (organic matter) were found. Cyanobacteria and algae were also of low abundance [4.2 cells mg− 1 DW (dry weight)]. Cyanobacteria comprised the major proportion of the autophotothrophic assemblages of subglacial soils. Deglaciated soils were similar to subglacial sediment in physico-chemical properties and microbial structure and numbers, unlike soil from vegetated sites or cryoconite sediment. In subglacial and deglaciated soil, relatively low diversity of microorganisms and low substrate availability was detected by PLFA analyses. Good accordance in microbial community structure assessments between epifluorescence microscopy and PLFA analyses was found. Our results suggest that the subglacial microbial populations can be divided into two groups: autochthonous microorganims (chemoheterotrophic bacteria) and allochthonous that retain the ability to proliferate and give rise to active population when conditions become favorable. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

8.
Abstract Microbial communities along vertical transects in the unsaturated zone were evaluated at five sites in the Pasco Basin, in southeastern Washington State. Sites with contrasting recharge rates were chosen to maximize or minimize the potential for microbial transport. Pore water ages along the vertical transects were established using natural chloride tracers, and ranged from modern to either ∼15,000 yBP (years before present) or ∼30,000 yBP at the two low-recharge sites. Unsaturated flow processes were short-circuited by preferential flow at two of the three high-recharge sites, resulting in rapid movement of water through the vertical transects. Microbial numbers and biomass, based on plate counts, and phospholipid fatty acid (PLFA) concentrations decreased with depth at all sites. The majority (55–90%) of the culturable chemoheterotrophs recovered from most samples were streptomycete bacteria. 16S rRNA gene sequence and MIDI analyses indicated that 75% of the remaining isolates were Gram-positive bacteria (most likely species of Arthrobacter and Bacillus) 25% were Gram-negative bacteria (probably members of several genera in the alpha- and gamma-Proteobacteria). Comparison of microbial communities at low-recharge sites vs. high-recharge sites, where preferential flow occurs, revealed several differences that might be attributed to vertical transport of microbial cells at the high-recharge sites. Plate counts and PLFA analyses indicated that the proportion of streptomycetes, which were abundant at the surface but present in the subsurface as spores, decreased, or remained constant, with depth at the low-recharge sites, but increased with depth at the high-recharge sites. PLFA analyses also indicated that Gram-negative bacteria displayed increased nutrient stress with depth at the high-recharge sites characterized by preferential flow, but not at the low recharge site. This may be a result of advective transport of microbes to depths where it was difficult for them to compete effectively with the established community. Moreover, PLFA community structure profiles fluctuated considerably with depth at the low-recharge sites, but not at the high-recharge sites. This might be expected if transport were distributing the microbial community along the vertical profile at the high-recharge sites. In contrast to the high-recharge sites at which preferential flow occurs, filtration likely prevented vertical transport of microorganisms at the high-recharge site that was characterized by unsaturated flow. Received: 6 November 1996; Accepted: 9 May 1997  相似文献   

9.
The distribution of phospholipid ester-linked fatty acids (PLFA) in sediments of eutrophic bays (Hiroshima Bay and Aki Nada) was studied to quantify the microbial biomass, community structure, and nutritional status. A total of 63 fatty acids in the range of C10 to C24 were determined. They consist of saturated fatty acids, branched fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids, and variation was revealed in the relative proportions of these fatty acids in sediments. On the basis of the PLFA concentration in sediments, the calculated microbial biomass showed variation (mean ± standard deviation = 0.70 × 108 ± 0.53 × 108 cells per g [dry weight] of sediment) in the eutrophic bays. In sediments, a higher amount of biomass was observed in the coastal area of Hiroshima Bay than that observed in the rest of the bay and adjacent Aki Nada. The microbial community structure of the present study area, as characterized by the PLFA profiles, showed very low percentages of polyunsaturated fatty acids and long-chain fatty acids characteristic of microeukary-otes and terrestrial input, respectively, and high percentages of fatty acids characteristic of bacteria. The distribution of PLFA profiles also showed the relative contribution of both aerobic and anaerobic bacteria, especially sulfate-reducing bacteria, in the study area. The relative proportions of PLFA revealed distinctive differences among the stations of the study area, as is evidenced from six clusters obtained for the PLFA profiles. The results of Tukey's honestly significant difference test further confirmed that the sediments in the coastal area of Hiroshima Bay were significantly enriched by a number of fatty acids when compared with other areas investigated where relatively few fatty acids were present in significant quantities. No marked variation in environmental parameters in the surface- and bottom-water samples was observed, indicating the absence of any water movement in the study area. Furthermore, low redox potential and the levels of sulfide in the sediment revealed the reduced condition of the sediment. The existing environmental conditions and pollution of the study area were attributed to the observed microbial community structure in the sediments.  相似文献   

10.
Phospholipid-derived fatty acids (PLFAs) are commonly used to characterize microbial communities in situ and the phylogenetic positions of newly isolated microorganisms. PLFAs are obtained through separation of phospholipids from glycolipids and neutral lipids using silica column chromatography. We evaluated the performance of this separation method for the first time using direct detection of intact polar lipids (IPLs) with high-performance liquid chromatography–mass spectrometry (HPLC-MS). We show that under either standard or modified conditions, the phospholipid fraction contains not only phospholipids but also other lipid classes such as glycolipids, betaine lipids, and sulfoquinovosyldiacylglycerols. Thus, commonly reported PLFA compositions likely are not derived purely from phospholipids and perhaps may not be representative of fatty acids present in living microbes.  相似文献   

11.
Variations in morphology, fatty acids, pigments and cyanobacterial community composition were studied in microbial mats across intertidal flats of the arid Arabian Gulf coast. These mats experience combined extreme conditions of salinity, temperature, UV radiation and desiccation depending on their tidal position. Different mat forms were observed depending on the topology of the coast and location. The mats contained 63 fatty acids in different proportions. The increased amounts of unsaturated fatty acids (12–39%) and the trans/cis ratio (0.6–1.6%) of the cyanobacterial fatty acid n- 18:1ω9 in the higher tidal mats suggested an adaptation of the mat microorganisms to environmental stress. Chlorophyll a concentrations suggested lower cyanobacterial abundance in the higher than in the lower intertidal mats. Scytonemin concentrations were dependent on the increase in solar irradiation, salinity and desiccation. The mats showed richness in cyanobacterial species, with Microcoleus chthonoplastes and Lyngbya aestuarii morphotypes as the dominant cyanobacteria. Denaturing gradient gel electrophoresis patterns suggested shifts in the cyanobacterial community dependent on drainage efficiency and salinity from lower to higher tidal zones. We conclude that the topology of the coast and the variable extreme environmental conditions across the tidal flat determine the distribution of microbial mats as well as the presence or absence of different microorganisms.  相似文献   

12.
Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P. fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles.  相似文献   

13.
We estimated the biomass and growth of arbuscular mycorrhizal (AM) mycelium in sand dunes using signature fatty acids. Mesh bags and tubes, containing initially mycelium-free sand, were buried in the field near the roots of the dune grass Ammophila arenaria L. AM fungal mycelia were detected at a distance of about 8.5 cm from the roots after 68 days of growth by use of neutral lipid fatty acid (NLFA) 16:1ω5. The average rate of mycelium extension during September and October was estimated as 1.2 mm day−1. The lipid and fatty acid compositions of AM fungal mycelia of isolates and from sand dunes were analysed and showed all to be of a similar composition. Phospholipid fatty acids (PLFAs) can be used as indicators of microbial biomass. The mycelium of G. intraradices growing in glass beads contained 8.3 nmol PLFAs per mg dry biomass, and about 15% of the PLFAs in G. intraradices, G. claroideum and AM fungal mycelium extracted from sand dunes, consisted of the signature PLFA 16:1ω5. We thus suggest a conversion factor of 1.2 nmol PLFA 16:1ω5 per mg dry biomass. Calculations using this conversion factor indicated up to 34 μg dry AM fungal biomass per g sand in the sand dunes, which was less than one tenth of that found in an experimental system with Glomus spp. growing with cucumber as plant associate in agricultural soil. The PLFA results from different systems indicated that the biomass of the AM fungi constitutes a considerable part of the total soil microbial biomass. Calculations based on ATP of AM fungi in an experimental growth system indicated that the biomass of the AM fungi constituted approximately 30% of the total microbial biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
以藏嵩草沼泽化草甸为研究对象,利用磷脂脂肪酸(PLFA)技术,研究连续6年N素添加对地上植被群落数量特征、土壤微生物群落结构的影响。结果表明:①藏嵩草沼泽化草甸群落生物量、枯枝落叶对施肥处理无明显响应,且莎草科植物对土壤氮素的吸收和利用率较低。②施肥增加了0-10 cm土壤微生物类群PLFAs丰富度尤其细菌和革兰氏阳性菌PLFAs,降低了10-20 cm PLFAs丰富度;③磷脂脂肪酸饱和脂肪酸/单烯不饱和脂肪酸、细菌PLFAs/真菌PLFAs的比值随土壤层次增加而增加;④0-10 cm土层革兰氏阳性菌、真菌PLFAs含量与pH、土壤速效磷、速效氮、土壤有机质显著正相关(P0.05或P0.01);10-20 cm土层,细菌、革兰氏阳性菌、真菌和总PLFAs含量与土壤有机质含量显著正相关(P0.05或P0.01)。表明藏嵩草沼泽化草甸微生物PLFAs含量和丰富度对施肥的响应存在明显的土层梯度效应,土壤微生物PLFAs含量和丰富度主要受表层土壤初始养分含量的影响。  相似文献   

15.
To understand the effect of air-drying pre-treatment, refrigeration, and freezing storages on microbial biomass and community structure in paddy soils, we measured total phospholipid fatty acid (PLFA) and PLFA profile after five treatments, including flooded (F), flooded-freezing (FF), flooded-air-drying (FAD), flooded-air-drying-freezing (FADF), and flooded-air-drying-refrigeration (FADR). FF and FADF treatments were followed by freeze-drying before analyzing the total PLFA and PLFA profile. The results showed that FF and FADF treatments increased the content of polyunsaturated fatty acids, but decreased that of branched chain saturated fatty acids. FAD treatment increased the concentrations of bacterial, aerobic bacterial, stress, Type I methanotrophs, and Gram-negative bacterial biomarkers, while it decreased the concentration of hydroxy fatty acid group and the ratios of cyclopropyl saturated fatty acids to their monoenoic precursors. FADR significantly decreased the concentration of total PLFA and all PLFA groups except for the mono-unsaturated fatty acid group. Statistical analysis with correspondence analysis showed that air-drying and storage changed the microbial community structure, but the effect of air-drying on soil microbial community structure was more pronounced than that of freezing. These results indicated that deep freezing followed by freeze-drying may be the most recommendable procedure before soil biochemical analysis in flooded paddy soils.  相似文献   

16.
To determine how plant species richness impacts microbial assimilation of new photosynthate, and how this may be modified by atmospheric N deposition, we analyzed the microbial assimilation of recent photosynthate in a 6-year-long field experiment in which plant species richness, atmospheric N deposition, and atmospheric CO2 concentration were manipulated in concert. The depleted δ13C of fumigation CO2 enabled us to investigate the effect of plant species richness and atmospheric N deposition on the metabolism of soil microbial communities in the elevated CO2 treatment. To accomplish this, we determined the δ13C of bacterial, actinobacterial, and fungal phospholipid fatty acids (PLFAs). In the elevated CO2 conditions of this study, the δ13C of bacterial PLFAs (i15:0, i16:0, 16:1ω7c, 16:1ω9c, 10Me16:0, and 10Me18:0) and the fungal PLFA 18:1ω9c was significantly lower in species-rich plant communities than in species-poor plant communities, indicating that microbial incorporation of new C increased with plant species richness. Despite an increase in plant production, total PLFA decreased under N deposition. Moreover, N deposition also decreased fungal relative abundance in species-rich plant communities. In our study, plant species richness directly increased microbial incorporation of new photosynthate, providing a mechanistic link between greater plant detritus production in species-rich plant communities and larger and more active soil microbial community.  相似文献   

17.
Abstract To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use of the acridine orange direct count method (AODC). Numbers of dominant, specific groups of bacteria and total numbers of protozoa were measured by use of the most probable number method (MPN). Viable biomass estimates were obtained from measures of ATP and ester-linked phospholipid fatty acid (PLFA) concentrations. The estimated numbers of total bacteria by direct counts were relatively constant throughout the aquifer, ranging from a low of 4.8 × 106 cells/g dry weight (dw) to a high of 5.3 × 107 cells/g dw. Viable biomass estimates based on PLFA concentrations were one to three orders of magnitude lower with the greatest concentrations (up to 4 × 105 cells/g dw) occurring at the border of the landfill and in samples collected from thin lenses of clay and silt with sand streaks. Cell number estimates based on ATP concentrations were also found to be lower than the direct count measurements (<2.2 × 106 cells/g dw), and with the greatest concentrations close to the landfill. Methanogens (Archaea) and reducers of sulfate, iron, manganese, and nitrate were all observed in the aquifer. Methanogens were found to be restricted to the most polluted and reduced part of the aquifer at a maximum cell number of 5.4 × 104 cells/g dw. Populations of sulfate reducers decreased with an increase in horizontal distance from the landfill ranging from a high of 9.0 × 103 cells/g dw to a low of 6 cells/g dw. Iron, manganese, and nitrate reducers were detected throughout the leachate plume all at maximum cell numbers of 106 cells/g dw. Changes in PLFA profiles indicated that a shift in microbial community composition occurred with increasing horizontal distance from the landfill. The types and patterns of lipid biomarkers suggested that increased proportions of sulfate- and iron-reducing bacteria as well as certain microeukaryotes existed at the border of the landfill. The presence of these lipid biomarkers correlated with the MPN results. There was, however, no significant correlation between the abundances of the specific PLFA biomarkers and quantitative measurements of redox processes. The application of AODC, MPN, PLFA, and ATP analyses in the characterization of the extant microbiota within the Grindsted aquifer revealed that as distance increased from the leachate source, viable biomass decreased and community composition shifted. These results led to the conclusion that the landfill leachate induced an increase in microbial cell numbers by altering the subsurface aquifer so that it was conducive to the growth of methanogens and of iron-and sulfate-reducing bacteria and fungi. Received: 11 June 1998; Accepted: 10 December 1998  相似文献   

18.
We investigated the influence of three factors—diesel oil concentration [2500, 5000, 10,000, 20,000 mg total petroleum hydrocarbons (TPH) kg−1 soil], biostimulation (unfertilized, inorganic fertilization with NPK nutrients, or oleophilic fertilization with Inipol EAP22), and incubation time—on hydrocarbon removal, enzyme activity (lipase), and microbial community structure [phospholipid fatty acids (PLFA)] in a laboratory soil bioremediation treatment. Fertilization enhanced TPH removal and lipase activity significantly (P ≤ 0.001). The higher the initial contamination, the more marked was the effect of fertilization. Differences between the two fertilizers were not significant (P > 0.05). Microbial communities, as assessed by PLFA patterns, were primarily influenced by the TPH content, followed by fertilization, and the interaction of these two factors, whereas incubation time was of minor importance. This was demonstrated by three-factorial analysis of variance and multidimensional scaling analysis. Low TPH content had no significant effect on soil microbial community, independent of the treatment. High TPH content generally resulted in increased PLFA concentrations, whereby a significant increase in microbial biomass with time was only observed with inorganic fertilization, whereas oleophilic fertilization (Inipol EAP22) tended to inhibit microbial activity and to reduce PLFA contents with time. Among bacteria, PLFA indicative of the Gram-negative population were significantly (P ≤ 0.05) increased in soil samples containing high amounts of diesel oil and fertilized with NPK after 21–38 days of incubation at 20°C. The Gram-positive population was not significantly influenced by TPH content or biostimulation treatment.  相似文献   

19.
Abstract The patterns of seasonal variation in the structure of a marine benthic microbial community were examined using phospholipid fatty acid analysis (PLFA). Principal component analysis of PLFA profiles indicated a strong seasonal pattern dominated the variance within the data set. Three functional groups of microorganisms (phototrophic microeukaryotes, and two groups of anaerobic bacteria) were disproportionately abundant in the communities that mapped to either extreme of the first principle component. Phototrophic microeukaryotes were most abundant and exhibited the greatest relative abundance during periods of cold water. In contrast, the two functional groups of anaerobic bacteria showed the greatest relative abundance during times of warm water. Differential responses by these groups, and macrofaunal deposit feeders, to light intensity and water temperature were offered as the proximal causes of the observed patterns. Received: 28 April 1997; Accepted: 10 September 1997  相似文献   

20.
硬化地表对不同树种土壤微生物群落结构和功能的影响   总被引:2,自引:0,他引:2  
于伟伟  陈媛媛  汪旭明  王效科 《生态学报》2019,39(10):3575-3585
城市硬化地表可减少土壤有机物输入,并改变土壤理化性质,由此可能影响土壤微生物群落结构和功能,但目前国内外相关研究较少。为研究不同树种下土壤微生物群落对硬化地表的响应,设置透水硬化地表(Pervious pavement, P)、不透水硬化地表(Impervious pavement, IP)和自然地表(Control, C)3个处理水平的地表类型,并栽种北方常见的常绿针叶树油松(pine,Pinus tabulaeformis)和落叶阔叶树白蜡(ash,Fraxinus chinensis)。采用氯仿熏蒸浸提法、磷脂脂肪酸法(PLFA)及BIOLOG培养法分别测定了土壤微生物量、群落结构和功能多样性。结果表明:(1)与自然地表(C)相比,硬化地表下土壤微生物生物量碳、氮含量显著降低(P0.05),土壤微生物群落组成和群落功能多样性发生了改变。透水和不透水硬化地表下土壤微生物细菌、真菌数量降低,真菌/细菌(fungi/bacteria, F/B)、cy/pre(环丙基脂肪酸/前体结构cyclopropyl fatty acid/monoenoic precursors)和sat/mono(一般饱和脂肪酸/单不饱和脂肪酸normal saturated fatty acid/monounsaturated fatty acid)等环境压力指标均显著升高(P0.05),且土壤微生物cy/pre值在不透水硬化地表下显著高于透水硬化地表下,表明不透水硬化地表下土壤环境压力更大;不透水硬化地表下土壤微生物对糖类、氨基酸类、羧酸类、胺类和聚合物的利用显著降低(P0.05),微生物群落功能丰富度及多样性指数显著降低(P0.05)。(2)土壤微生物群落结构和功能多样性在不同树种间存在一定差异。油松树下土壤微生物真菌、丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)和F/B值在透水和不透水硬化地表下均显著降低(P0.05),而白蜡树下只在透水硬化地表下显著降低(P0.05);硬化地表使土壤微生物对糖类、氨基酸类和聚合物的利用强度在油松和白蜡树下表现出显著差异。硬化地表对土壤微生物的影响将进一步影响城市绿地的养分循环、树木生境和生态系统服务功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号