首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged hypoxic exposure results in cell failure, glutamate excitotoxicity and apoptosis in the brain. The epaulette shark can withstand prolonged hypoxic exposure without brain injury, while maintaining normal function and activity at tropical temperatures. We examined whether the inhibitory neurotransmitter GABA was involved in hypoxia tolerance and neuroprotection during hypoxic preconditioning. Sharks were exposed to either cyclic hypoxic preconditioning or normoxic conditions. Whole brain GABA concentration was determined using high performance liquid chromatography; GABA distribution in neuronal structures was localised with immunohistochemistry and quantified. While the overall brain level of GABA was not significantly different, there was a significant heterogeneous change in GABA distribution. GABA immunoreactivity was elevated in key motor and sensory nuclei from preconditioned animals, including the nucleus motorius nervi vagi and the cerebellar crest (p < 0.001), corresponding to areas of previously reported neuronal hypometabolism. Since the neuroprotection in all other hypoxia and anoxia tolerant species examined so far relies in part on significant elevations in GABA and the phylogenetically older epaulette shark does not, it is reasonable to assume that further research in this unique animal model may yield clues to new key modulators of neuroprotection. Understanding such mechanisms may facilitate the development of therapeutic interventions in the treatment of transient ischaemic attacks, strokes and traumatic brain injury.  相似文献   

2.
All 20.000 different fish species vary greatly in their ability to tolerate and survive fluctuating oxygen concentrations in the water. Especially fish of the genus Carassius, e.g. the crucian carp and the goldfish, exhibit a remarkable tolerance to limited/absent oxygen concentrations. The metabolic changes of anoxia-tolerant crucian carp were recently studied and published. Contrary to crucian carp, the hypoxia-tolerant common carp cannot survive a complete lack of oxygen (anoxia). Therefore, we studied the 1H-NMR-based metabolomics of brain, heart, liver and white muscle extracts of common carp, subjected to anoxia (0 mg O2 l?1) and hypoxia (0.9 mg O2 l?1) at 5 °C. Specifically, fish were exposed to normoxia (i.e. 9 mg O2 l?1; controls 24 h, 1 week and 2 weeks), acute hypoxia (24 h), chronic hypoxia (1 week) and chronic hypoxia (1 week) with normoxic reoxygenation (1 week). Additionally, we also investigated the metabolic responses of fish to anoxia for 2 h. Both anoxia and hypoxia significantly changed the tissue levels of standard energy metabolites as lactate, glycogen, ATP/ADP and phosphocreatine. Remarkably, anoxia induced increased lactate levels in all tissues except for the heart whereas hypoxia resulted in decreased lactate concentrations in all tissues except for brains. Furthermore, hypoxia and anoxia influenced amino acids (alanine, valine/(iso)leucine) and neurotransmitters levels (GABA, glutamate). Lastly, we also detected ‘other’ i.e. previously not reported compounds to play a role in the present context. Scyllo-inositol levels changed significantly in heart, liver and muscle, providing novel insights into the anoxia/hypoxic responses of the common carp.  相似文献   

3.
Lipid metabolism in rat brain was investigated in mild hypoxia (5–7% O2 in nitrogen), which is associated with no apparent change in energy metabolism, and in severe anoxic conditions (ischemic anoxia), which are associated with a rapid decrease in ATP and oxygen content in brain. When brain slices were incubated with labeled glucose or acetate, the amount of labeled CO2 produced was no different in experimental and control conditions, but the incorporation of radioactivity into brain lipids was decreased in all hypoxic and anoxic conditions. Interestingly, the incorporation of label from [14C]glucose into phosphatidylinositols was specifically inhibited by both hypoxic conditions but not by conditions associated with anoxia. The incorporation of the same labeled precursor, i.e., [14C]glucose, into fatty acids was elevated in ischemic anoxia but reduced after mild hypoxia. Because of the obvious differences in oxygen utilization in brain in anoxic and hypoxic conditions, we believe that the observed disturbances in lipid metabolism may be due to factors other than those that arise from oxygen deficiency alone.  相似文献   

4.
Cyclooxygenase-2 (COX-2) activity has been implicated in the pathogenesis of cerebral ischemia. To determine whether COX-2 activity within the neuron itself exacerbates hypoxic neuronal injury, neuron-enriched cultures were subjected to anoxia. Treatment with COX-2 selective antagonists decreased cell death. Neurons cultured from homozygous COX-2 gene disrupted mice were resistant to hypoxia compared to those of heterozygotes. Infection of primary neurons with AAV expressing COX-2 exacerbated cell death compared to neurons infected with enhanced green fluorescent protein (EGFP) control vector. Addition of PGE2, PGD2 or PGF2α to the medium exacerbated injury, suggesting that the deleterious effects of COX-2 overexpression in hypoxia could be mediated by direct receptor mediated effects of prostaglandins. Overexpression of COX-2 did not increase expression of cyclin D1 or phosphoretinoblastoma protein (pRb), or cleavage of caspase 3 suggesting that this cell cycle mechanism does not mediate COX-2 toxicity in this model.  相似文献   

5.
The rate-limiting enzyme in the biosynthetic pathway of catecholamines is tyrosine hydroxylase (TH), the activity of which is dependent on molecular oxygen. Zebrafish (Danio rerio) possess two non-allelic TH coding genes, TH1 and TH2. A principal goal of the present study was to determine if the expression of these genes is sensitive to environmental hypoxia. Additionally, we sought to determine if catecholamine content of larvae was changed by environmental hypoxia, and whether the hearts of hypoxic larvae were equally responsive to exogenous catecholamine (norepinephrine) exposure. After 2 days of exposure to hypoxia [5–7 days post-fertilization (dpf); PO2 = 30 Torr] TH2 mRNA expression was significantly lower and dopamine β hydroxylase (DβH) mRNA was significantly higher in whole larvae. Whole body catecholamine levels were unchanged until after 4 days of hypoxic exposure (5–9 dpf), at which time there was a significant increase in epinephrine and norepinephrine contents. Norepinephrine content was significantly elevated in the hearts of adult fish after 2 and 4 days of hypoxic exposure, and TH1 mRNA expression was increased in the kidney of both groups. After 2 or 4 days of exposure to hypoxia, larvae displayed significantly lower heart rates than normoxic fish. However, application of exogenous norepinephrine caused similar increases in heart rate in both groups. Overall, it is concluded that the mRNA expression of TH1 and TH2 is differentially affected by hypoxia exposure in larvae and adults. Also, catecholamine biosynthesis appears to be activated by 2 dpf and although whole body catecholamine levels increase during hypoxia (possibly promoting downregulation of cardiac β-adrenergic receptors), there is no accompanying decrease in the response of the heart to adrenergic stimulation.  相似文献   

6.
ABSTRACT

Acute toxicity of sodium nitrite (NaNO2) was assessed in chickens (Gallus gallus domesticus) and domestic mallard ducks (Anas platyrhynchos domestica) by oral gavage and in free-feeding trials with chickens, domestic mallard ducks, pigeons (Columba livia f. domestica), budgerigars (Melopsittacus undulates) and wētā (Family: Rhaphidophoridae). Free-feeding trials involved the presentation of toxic paste and pellet baits containing encapsulated NaNO2 developed for the control of common brushtail possums (Trichosurus vulpecula) and feral pigs (Sus scrofa). The oral gavage LD50 value for NaNO2 in solution was approximately 68.50?mg/kg (95% CI 55.00–80.00?mg/kg) for both chickens and ducks. In feeding trials, six out of 12 chickens consumed toxic paste bait and four of these birds consumed a lethal dose. When chickens consumed toxic paste bait, the LD50 value was approximately 254.6?mg/kg (95% CI 249.1–260.2?mg/kg). Of the other three species of birds presented with toxic baits only one duck consumed a lethal dose of paste bait. There was no evidence of wētā feeding on toxic baits.  相似文献   

7.
Cerebral hypoxia results in generation of nitric oxide (NO) free radicals by Ca++-dependent activation of neuronal nitric oxide synthase (nNOS). The present study tests the hypothesis that the hypoxia-induced increased expression of nNOS in cortical neurons is mediated by NO. To test this hypothesis the cellular distribution of nNOS was determined immunohistochemically in the cerebral cortex of hypoxic newborn piglets with and without prior exposure to the selective nNOS inhibitor 7-nitroindazole sodium (7-NINA). Studies were conducted in newborn piglets, divided into normoxic (n = 6), normoxic treated with 7-NINA (n = 6), hypoxic (n = 6) and hypoxic pretreated with 7-NINA (n = 6). Hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 h. Cerebral tissue hypoxia was documented by decrease of ATP and phosphocreatine levels in both the hypoxic and 7-NINA pretreated hypoxic groups (P < 0.01). An increase in the number of nNOS immunoreactive neurons was observed in the frontal and parietal cortex of the hypoxic as compared to the normoxic groups (P < 0.05) which was attenuated by pretreatment with 7-NINA (P < 0.05 versus hypoxic). 7-NINA affected neither the cerebral energy metabolism nor the cellular distribution of nNOS in the cerebral cortex of normoxic animals. We conclude that nNOS expression in cortical neurons of hypoxic newborn piglets is NO-mediated. We speculate that nNOS inhibition by 7-NINA will protect against hypoxia-induced NO-mediated neuronal death.  相似文献   

8.
The aims of the current study were to 1) examine the effects of hypoxia and acidosis on cultured cortical neurons and 2) explore the role of transporters and ion channels in hypoxic injury. Cell injury was measured in cultured neurons or hippocampal slices following hypoxia (1% O(2)) or acidosis (medium pH 6.8) treatment. Inhibitors of transporters and ion channels were employed to investigate their roles in hypoxic injury. Our results showed that 1) neuronal damage was apparent at 5-7 days of hypoxia exposure, i.e., 36-41% of total lactate dehydrogenase was released to medium and 2) acidosis alone did not lead to significant injury compared with nonacidic, normoxic controls. Pharmacological studies revealed 1) no significant difference in neuronal injury between controls (no inhibitor) and inhibition of Na(+)-K(+)-ATP pump, voltage-gated Na(+) channel, ATP-sensitive K(+) channel, or reverse mode of Na(+)/Ca(2+) exchanger under hypoxia; however, 2) inhibition of NBCs with 500 microM DIDS did not cause hypoxic death in either cultured cortical neurons or hippocampal slices; 3) in contrast, inhibition of Na(+)/H(+) exchanger isoform 1 (NHE1) with either 10 microM HOE-642 or 2 microM T-162559 resulted in dramatic hypoxic injury (+95% for HOE-642 and +100% for T-162559 relative to normoxic control, P < 0.001) on treatment day 3, when no death occurred for hypoxic controls (no inhibitor). No further damage was observed by NHE1 inhibition on treatment day 5. We conclude that inhibition of NHE1 accelerates hypoxia-induced neuronal damage. In contrast, DIDS rescues neuronal death under hypoxia. Hence, DIDS-sensitive mechanism may be a potential therapeutic target.  相似文献   

9.
There are genetic differences in the hepatic glucose and linoleic acid metabolisms between Muscovy and Pekin ducks ad libitum-fed. To understand the effect of overfeeding on the hepatic metabolisms in these two species of ducks, we compared the different pathways of glucose and linoleic acid reaching the liver of Muscovy (Cairina moschata) (n = 6) and Pekin (Anas platyrhynchos) (n = 6) ducks overfed for 1 week and sacrificed 2–4 h after their last meal by using the ex vivo method of liver slices incubated for 16 h with [U-14C]-glucose, [1-14C]-linoleic acid and [35S]-methionine added to the survival medium. The glucose was the main precursor of triacylglycerol synthesis in the liver of these two species and its hepatic metabolism was similar between species. The hepatic uptake of linoleic acid was 1.7-fold higher (P = 0.020) in the Muscovy duck than in the Pekin duck leading to a 1.9-fold higher (P = 0.017) esterification of this fatty acid in the liver of the Muscovy duck than in that of the Pekin duck. Finally, both species after 1 week of overfeeding exhibited the same capacity to secrete VLDL remaining insufficient to avoid hepatic steatosis.  相似文献   

10.
Improvement of neuronal recovery in the ischemic penumbra around a brain infarct has a large potential to advance clinical recovery of patients with acute ischemic stroke. However, pathophysiological mechanisms leading to either recovery or secondary damage in the penumbra are not completely understood. We studied neuronal dynamics in a model system of the penumbra consisting of networks of cultured cortical neurons exposed to controlled levels and durations of hypoxia. Short periods of hypoxia (pO2≈20mmHg) reduced spontaneous activity, due to impeded synaptic function. After ≈6 hours, activity and connectivity partially recovered, even during continuing hypoxia. If the oxygen supply was restored within 12 hours, changes in network connectivity were completely reversible. For longer periods of hypoxia (12–30 h), activity levels initially increased, but eventually decreased and connectivity changes became partially irreversible. After ≈30 hours, all functional connections disappeared and no activity remained. Since this complete silence seemed unrelated to hypoxic depths, but always followed an extended period of low activity, we speculate that irreversible damage (at least partly) results from insufficient neuronal activation. This opens avenues for therapies to improve recovery by neuronal activation.  相似文献   

11.
The influence of anoxia and hypoxia on dynamic of intracellurar pH and ATP content in rice and wheat root tips was investigated with 31P-NMR spectroscopy. Both cereals responded to hypoxia similarly, by rapid cytoplasmic acidification (from pH 7.6–7.7 to 7.1), which was followed by slow partial recovery (0.3 units). Anoxia led to a dramatic pHcyt drop in tissues of both species (from pH 7.6–7.7 to less than 7.0) and partial recovery took place in rice only. In wheat, the acidification continued to pH 6.8 after 6 h of exposure. Anoxic wheat root tips were deficient in ADH induction, whereas increased activity of alcoholic fermentation enzymes took place in anoxic rice root tips, as well as in both species after hypoxic treatment. In both plants, NTP content followed the dynamics of pHcyt. There was a strong correlation between NTP content and cytoplasmic H+ activity ([H+]cyt = 10−pHcyt) for both hypoxic and anoxic conditions. In this addendum we want to focus the reader''s attention on the importance of adequate experimental design when hypoxia is under investigation and on some further perspectives of intracellular pH regulation in plants under anaerobic conditions.Key words: anoxia, hypoxia, rice, wheat, cytoplasmic pH regulation  相似文献   

12.
Wu LY  Wang Y  Jin B  Zhao T  Wu HT  Wu Y  Fan M  Wang XM  Zhu LL 《Neurochemical research》2008,33(10):2118-2125
Nervous system development at early stage is in hypoxic environment. Very little is known about the role of hypoxia in neuronal development. P19 embryonal carcinoma (EC) cells are a widely used model for studying early neuronal development. In this study we investigated the roles of hypoxia in differentiation of dopaminergic neurons derived from P19 EC cells. Results demonstrate that hypoxia increases the percentage of differentiated neurons, especially neurons of dopaminergic phenotype. To investigate the potential mechanism involved in hypoxia promoted differentiation of dopaminergic neurons, we measured the expression of hypoxia-inducible factor 1α (HIF-1α), based on its characteristic response to hypoxia. The result shows that HIF-1α mRNA level in P19 EC cells increases after hypoxia treatment. It is known that HIF-1α regulates the expression of tyrosine hydroxylase (TH) gene through binding to its promoter. Therefore, we propose that the underlying mechanism for hypoxia promoted differentiation of dopaminergic neurons was mediated by HIF-1α up-regulation under hypoxia. Yue Wang—Co-first author. Special Issue in honor of Dr. Ji-Sheng Han.  相似文献   

13.
Waterfowls, such as ducks, are natural hosts of avian influenza virus (AIV) and can genetically limit the pathogenicity. On the other hand, some AIV strains cause severe pathogenicity in chickens. It is suggested that differences in the pathogenicity of AIV infection between waterfowls and chickens are related to the expression of retinoic acid-inducible gene I (RIG-I), a pattern recognition receptor that chickens evolutionally lack. Here, we knocked-in the duck RIG-I bearing the T2A peptide sequence at the 3′ region of the Mx, an interferon-stimulated gene (ISG), in chicken embryo fibroblast cells (DF-1) using the precise integration into target chromosome (PITCh) system to control the duck RIG-I expression in chickens. The expression patterns of the duck RIG-I were then analyzed using qPCR. The knocked-in DF-1 cells expressed RIG-I via the stimulation of IFN-β and poly(I:C) in a dose-dependent manner. Moreover, poly(I:C) stimulation in the knocked-in DF-1 cells upregulated RIG-I-like receptor (RLR) family signaling pathway-related genes IFN-β, OASL, and IRF7. The IFN-β-dependent expression of RIG-I and upregulation of IFN-β in the poly(I:C) stimulation demonstrated a positive-feedback loop via RIG-I, usually evident in ducks. Overall, this novel strategy established RIG-I-dependent immune response in chickens without overexpression of RIG-I and disruption of the host genes.  相似文献   

14.
Summary The effects of breathing different levels of O2 and CO2 before forced dives were investigated in 5 dabbling ducks (White Pekin) and 5 deep divers (Double Crested Cormorants). Breathing and heart rates, blood gases, and blood pH, were monitored. After breathing air before diving, ducks exhibited a slow decrease in heart rate that reached a minimum of 20 beats·min−1 after 50 s submergence. The development of bradycardia was retarded if the duck breathed a hyperoxic gas mixture before diving and was accelerated if the gas mixture was hypoxic and hypercapnic. The cormorants' diving heart rate decreased to a minimum of about 60 beats·min−1 in less than 20 s and development of bradycardia was unaffected by different levels of O2 and CO2 breathed before diving. Consequently, bradycardia in forced dived cormorants was unrelated to changes in blood gases in the dives which suggests that intravascular chemoreceptors are unimportant in initiating diving bradycardia in cormorants.  相似文献   

15.
NAD(P)H autofluorescence was used to verify establishment of metabolic anoxia using primary cultures of cortical neurons and astrocytes. Cells on cover slips were placed in a chamber and O2 was displaced by continuous infusion of argon. Perfusion with medium at PO2 < 0.4 mm Hg caused an increase in NAD(P)H fluorescence, albeit to levels lower than that obtained with cyanide. Addition of the nitric oxide-generating agent DETA-NO to the hypoxic medium further increased fluorescence to the level with cyanide. Fluorescence under anoxia remained high in the presence of glucose, but declined in neurons and not in astrocytes when glucose was substituted with 2-deoxyglucose. Reoxygenation of neurons resulted in a decline in fluorescence and a loss in fluorescent gradient between fully reduced and fully oxidized (plus respiratory uncoupler). We conclude that (1) DETA-NO is useful for generating metabolic anoxia in the presence of argon (2) Exogenous glucose is necessary to maintain NAD(P)H in a reduced state during metabolic anoxia in neurons but not astrocytes (3) Neurons undergo a partially irreversible decline in NAD(P)H fluorescence during metabolic anoxia and reoxygenation that could contribute to prolonged metabolic failure. Special issue dedicated to John P. Blass.  相似文献   

16.
17.
cFos expression (indicating a particular kind of neuronal activation) was examined in embryonic day (E) 18 chick embryos after exposure to 4 h of either normoxia (21% O2), modest hypoxia (15% O2), or medium hypoxia (10% O2). Eight regions of the brainstem and hypothalamus were surveyed, including seven previously shown to respond to hypoxia in late‐gestation mammalian fetuses (Breen et al., 1997; Nitsos and Walker, 1999b). Hypoxia‐related changes in chick embryo brain activation mirrored those found in fetal mammals with the exception of the medullary Raphe, which showed decreased hypoxic activation, compared with no change in mammals. This difference may be explained by the greater anapyrexic responses of chick embryos relative to mammalian fetuses. Activation in the A1/C1 region was examined in more detail to ascertain whether an O2‐sensitive subpopulation of these cells containing heme oxygenase 2 (HMOX2) may drive hypoxic brain responses before the maturation of peripheral O2‐sensing. HMOX2‐positive and ‐negative catecholaminergic cells and interdigitating noncatecholaminergic HMOX2‐positive cells all showed significant changes in cFos expression to hypoxia, with larger population responses seen in the catecholaminergic cells. Hypoxia‐induced activation of lower‐brain regions studied here was significantly better correlated with activation of the nucleus of the solitary tract (NTS) than with that of HMOX2‐containing A1/C1 neurons. Together, these observations suggest that (1) the functional circuitry controlling prenatal brain responses to hypoxia is strongly conserved between birds and mammals, and (2) NTS neurons are a more dominant driving force for prenatal hypoxic cFos brain responses than O2‐sensing A1/C1 neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 64–74, 2016  相似文献   

18.
Hypoxic tumours have the worst prognosis because they are the most aggressive and the most likely to metastasize. This may be because these aggressive cancers have a hypoxic core which generates signals that activate angiogenesis which enables the supply of nutrients and oxygen to a rapidly growing outer oxidative shell. The hypoxic core is a crucial element of this hypothesis, as is the fact that the cells in the hypoxic core are inherently adapted to survive hypoxia. We reasoned therefore that cancer cells exposed to hypoxia/anoxia should show the hallmarks of adaptation to hypoxia/anoxia, i.e. a down-regulation of protein synthesis and a reverse Pasteur effect. We tested this hypothesis in transformed (MCF-7) and normal (HME) human mammary epithelial cells, by exposing both cell types to a range of oxygen concentrations, including anoxia. We find that indeed protein synthesis is down-regulated in the MCF-7, but not in the HME cells in response to anoxia. The data on glycolysis are not as clear-cut, but in the light of similar previous measurements on hypoxia-tolerant animals, is still consistent with the hypothesis.  相似文献   

19.
This study was designed to examine the effects of intracerebroventricular (ICV) injection of bicuculline (GABAA receptor antagonist) and muscimol (GABAA receptor agonist) on glutamate-induced eating response in 24-h food-deprived (FD24) broiler cockerels. At first, guide cannula was surgically implanted in the right lateral ventricle of chickens. In experiment 1, birds were ICV injected with different doses of glutamate. In experiment 2, birds were administered with effective dose of glutamate after bicuculline. In experiment 3, chickens received muscimol prior to the injection of glutamate, and cumulative food intake was determined at 3-h postinjection. The results of this study showed that glutamate decreases food consumption in FD24 broiler cockerels (P ≤ 0.05), and this reduction occurs in a dose-dependent manner. Moreover, the inhibitory effect of glutamate on food intake was significantly increased with bicuculline pretreatment, and this effect was attenuated with muscimol (P ≤ 0.05). These results suggest that there is an interaction between glutamatergic and GABAergic systems (through GABAA receptor) on food intake in broiler cockerels.  相似文献   

20.
We studied the content of mRNA of a glycoprotein, erythropoietin, in structures of the rat brainstem; the animals were adapted to intermittent hypoxia at different contents of oxygen in hypoxic gas mixtures (12 or 7% О2, a 2-week-long course with five sessions per day). Under conditions of such adaptation, the content of erythropoietin in the brainstem demonstrated a clear trend toward a decrease after a course of moderate hypoxic trainings (12% О2), and a more than twofold drop after a “stronger” course (7% О2). We suppose that the decrease in the intensity of synthesis of this glycoprotein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号