首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new and potentially universal selection system for mitochondrial transformation based on bacterial genes, and demonstrate its feasibility in Saccharomyces cerevisiae. We first found that cytoplasmically synthesized Barnase, an RNase, interferes with mitochondrial gene expression when targeted to the organelle, without causing lethality when expressed at appropriate levels. Next, we synthesized a gene that uses the yeast mitochondrial genetic code to direct the synthesis of the specific Barnase inhibitor Barstar, and demonstrated that expression of this gene, BARSTM, integrated in mtDNA protects respiratory function from imported barnase. Finally, we showed that screening for resistance to mitochondrially targeted barnase can be used to identify rare mitochondrial transformants that had incorporated BARSTM in their mitochondrial DNA. The possibility of employing this strategy in other organisms is discussed.Communicated by R. G. Herrmann  相似文献   

2.
The salt-tolerance gene rstB under the control of the cauliflower mosaic virus 35S promoter was used as a selectable marker gene in the Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum cv. Xanthi). The selective agent for plant regeneration was tolerance to 170 mM sodium chloride. The highest selection efficiency was 83.3%. No obvious differences in selection efficiencies were observed when those obtained using the standard selectable marker gene hpt and a selection regime of 10 mg l−1 hygromycin. Transgenic events were confirmed by PCR, Southern blot, RT-PCR and green fluorescent protein studies. The rstB transgenic plants showed improved salt tolerance and a normal phenotype. Based on these results, we suggest that the rstB gene may be used as a promising selectable marker and an alternative to the antibiotic- or herbicide-resistance genes in plant transformation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Puromycin, hygromycin, and geneticin (G418) are antibiotics frequently used to select genetically engineered eukaryotic cells after transfection or transduction. Because intrinsic or acquired high expression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp/ABCB1) and multidrug resistance-associated proteins (MRP/ABCC1), can hamper efficient selection, it is important to know whether these antibiotics are substrates and/or inducers of efflux transporters. Therefore, we investigated the influence of these antibiotics on drug transporter expression by quantitative real-time polymerase chain reaction in the induction model cell line LS180. Moreover, we assessed whether ABC transporters influence the growth inhibitory effects of these antibiotics by proliferation assays using Madin-Darby canine kidney II (MDCKII) cells overexpressing the particular transporter. The results obtained indicate that puromycin and G418 are substrates of several ABC transporters, mainly Pgp/ABCB1. In contrast, hygromycin seems to be no good substrate for any of the ABC transporters investigated. Puromycin induced ABCC1/MRP1, whereas G418 suppressed ABCB1/Pgp, at the messenger RNA (mRNA) level. In contrast, hygromycin had no effect on ABC transporter mRNA expressions. In conclusion, this study emphasizes the significance of ABC transporters for the efficacy of selection processes. Consciousness of the results is supposed to guide the molecular biologist to the right choice of adequate experimental conditions for successful selection of genetically engineered eukaryotic cells.  相似文献   

4.
A novel selection marker for plant transformation alternative to antibiotic and herbicide resistance is described. The selective agent applied is 2-deoxyglucose (2-DOG) which in the cytosol of plant cells is phosphorylated by hexokinase yielding 2-DOG-6-phosphate (2-DOG-6-P). 2-DOG-6-P exerts toxic effects on overall cellular metabolism leading to cell death. We observed that constitutive expression of the yeast DOG R1 gene encoding a 2-DOG-6-P phosphatase resulted in resistance towards 2-DOG in transgenic tobacco plants. This finding was exploited to develop a selection system during transformation of tobacco and potato plants. The lowest concentration of 2-DOG leading to nearly complete inhibition of regeneration of wild-type explants was found to range between 400 and 600 mg/l 2-DOG for tobacco, potato and tomato plants. After Agrobacterium tumefaciens-mediated transformation cells expressing the DOG R1 gene were selected by resistance to 2-DOG. More than 50% of tobacco explants formed shoots and on average 50% of these shoots harboured the DOG R1 gene. Similar results were obtained for potato cv. Solara. The acceptability of the resistance gene derived from baker's yeast, the unobjectionable toxicological data of 2-DOG as well as the normal phenotype of DOG R1-expressing plants support the use of this selection system in crop plant transformation.  相似文献   

5.
Acetohydroxyacid synthase (AHAS) is the target enzyme for a number of herbicides. A S653N mutation in the AHAS gene results in an increased tolerance to imidazolinone herbicides. We have investigated the use of the mutated gene as selection gene for potato transformation. This resulted in a transformation system with a very high transformation frequency and low rate of escapes. The mutated AHAS gene was introduced into transformed potato together with a -glucuronidase (GUS) gene. Selection on 0.5 M Imazamox yielded GUS expression in 93–100% of regenerated shoots. Furthermore the mutated AHAS gene was used as selection gene for production of high-amylopectin potato lines. The high transformation frequency was verified and potato lines with the desirable starch quality were obtained.Abbreviations ABA Abscisic acid - AHAS Acetohydroxyacid synthase - BAP 6-Benzylaminopurine - 2,4-D 2, 4-Dichlorophenoxyacetic acid - GA3 Gibberellic acid - GBSS Granule bound starch synthase - GUS -Glucuronidase - MS medium Murashige and Skoog medium - NAA -Naphthaleneacetic acid - nos Nopaline synthase - OCS Octopine synthase - PCR Polymerase chain reaction - X-gluc 5-Bromo-4-chloro-3-indolyl-beta-d-glucuronic acid - YEB Yeast extract brothCommunicated by R. Schmidt  相似文献   

6.
Plant HSP101 has dual activities, first, in conferring thermotolerance, and secondly, in serving as a translational activator. In this study, we introduced Oryza sativa Hsp101 (osHsp101) cDNA into tobacco by Agrobacterium-mediated transformation. Stable integration and expression of the transgene into the tobacco genome was demonstrated by Southern and Western blot analysis. Overexpression of osHSP101 had no noticeable effect on growth or development of the transgenic plants. Homozygous T(2) transgenic plants with overexpressed osHSP101 survived heat treatment better than untransformed control plants. In addition, taking advantage of conferring basal thermotolerance by plant HSP101, we were able to demonstrate the feasibility of using osHsp101 as a selection marker and select the transformants under high temperature in tobacco leaf disc transformation mediated by Agrobacterium. Furthermore, transgenic tobacco plants with overexpressed osHSP101 were able to enhance luciferase expression up to 2.9-fold more than untransformed plants in the progeny of reciprocally crossed with omega-luciferase reporter lines.  相似文献   

7.
A mannose selection system was adapted for use in the Agrobacterium-mediated transformation of Chinese cabbage. This system makes use of the pmi gene that encodes phosphomannose isomerase, which converts mannose-6-phosphate to fructose-6-phosphate. Hypocotyl explants from 4–5-day-old seedlings of Chinese cabbage inbred lines were pre-cultured for 2–3 days and then infected with Agrobacterium. Two genes (l-guluno-γ-lactone oxidase, GLOase, and jasmonic methyl transferase, JMT) were transformed into Chinese cabbage using the transformation procedure developed in this study. We found that supplementing the media with 7 g l−1 mannose and 2% sucrose provides the necessary conditions for the selection of transformed plants from nontransformed plants. The transformation rates were 1.4% for GLOase and 3.0% for JMT, respectively. The Southern blot analysis revealed that several independent transformants (T 0) were obtained from each transgene. Three different inbred lines were transformed, and most of the T 1 plants had normal phenotypes. The transformation method presented here for Chinese cabbage using mannose selection is efficient and reproducible, and it can be useful to introduce a desirable gene(s) into commercially useful inbred lines of Chinese cabbage.  相似文献   

8.
Genetic techniques are frequently used to sample and monitor wildlife populations. The goal of these studies is to maximize the ability to distinguish individuals for various genetic inference applications, a process which is often complicated by genotyping error. However, wildlife studies usually have fixed budgets, which limit the number of genetic markers available for inclusion in a study marker panel. Prior to our study, a formal algorithm for selecting a marker panel that included genotyping error, laboratory costs, and ability to distinguish individuals did not exist. We developed a constrained nonlinear programming optimization algorithm to determine the optimal number of markers for a marker panel, initially applied to a pilot study designed to estimate black bear abundance in central Georgia. We extend the algorithm to other genetic applications (e.g., parentage or population assignment) and incorporate possible null alleles. Our algorithm can be used in wildlife pilot studies to assess the feasibility of genetic sampling for multiple genetic inference applications. © 2011 The Wildlife Society.  相似文献   

9.
项峥  陈献忠  张利华  沈微  樊游  陆茂林 《遗传》2014,36(10):1053-1061
热带假丝酵母(Candida tropicalis)在发酵工业中具有重要的应用潜力,但二倍体遗传结构和较低的遗传转化效率限制了其代谢工程育种技术的应用。建立可靠的遗传转化技术并高效的删除目的基因是代谢工程改造热带假丝酵母的重要前提。文章以C. tropicalis ATCC 20336为出发菌株,通过化学诱变筛选获得了尿嘧啶缺陷型突变株C. tropicalis XZX(ura3/ura3)。以丙酮酸脱羧酶(Pyruvate decarboxylase,PDC)基因作为靶基因构建了两端包含同源臂并在选择性标记C. tropicalis URA3(Orotidine-5′-phosphate decarboxylase,乳清酸核苷-5-磷酸脱羧酶)基因两侧同向插入源于沙门氏菌(Salmonella typhimurium)的hisG序列的基因敲除盒PDC1-hisG-URA3-hisG- PDC1(PHUHP),并转化宿主菌株C. tropicalis XZX,筛选获得PHUHP片段正确整合到染色体的PDC基因位点的转化子XZX02。在此基础上,将转化子XZX02涂布于5-FOA(5-氟乳清酸)选择培养基上,筛选得到URA3基因从PHUHP片段中丢失的营养缺陷型菌株XZX03。进一步构建了第2个PDC等位基因的删除表达盒PDCm- URA3-PDCm,并转化C. tropicalis XZX03菌株,获得转化子C. tropicalis XZX04。经PCR和DNA测序确认转化子C. tropicalis XZX04细胞染色体上的两个PDC等位基因被成功敲除。文章建立了一种营养缺陷型标记可重复使用的热带假丝酵母遗传转化技术,利用该技术成功敲除了细胞的PDC基因,为进一步利用代谢工程改造热带假丝酵母奠定了基础。  相似文献   

10.
We previously established lines of transgenic Xenopus laevis expressing green fluorescent protein (GFP) or GFP fusion proteins in the rod photoreceptors of their retinas under control of the X. laevis opsin promoter, which permits easy identification of transgenic animals by fluorescence microscopy. However, GFP tags can alter the properties of fusion partners, and in many circumstances a second selectable marker would be useful. The transgene constructs we used also encode a gene that confers resistance to the antibiotic G418 in cultured mammalian cells. In this study, we show that F2 transgenic offspring of these animals are more resistant to G418 toxicity than their non-transgenic siblings, as are primary transgenic X. laevis. G418 resistance can be used as a selectable marker in transgenic X. laevis, and possibly other aquatic transgenic animals.  相似文献   

11.
何勇  罗岸  母连胜  陈强  张艳  叶开温  田志宏 《遗传》2017,39(9):810-827
与细胞核基因工程相比,质体基因工程能更安全、精确和高效地对外源基因进行表达,作为下一代转基因技术已广泛用于基础研究和生物技术应用领域。与细胞核基因工程一样,质体基因工程中也需要合适的选择标记基因用于转化子的筛选和同质化,但基于质体基因组的多拷贝性和母系遗传特点,转化子的同质化需要一个长期的筛选过程,这就决定了质体基因工程中选择标记基因的选择标准将不同于细胞核基因工程中广泛使用的现行标准。目前,质体基因工程的遗传转化操作中使用较多的是抗生素选择标记基因,出于安全性考虑,需要找到可替换、安全的选择标记基因或有效的标记基因删除方法。本文在对质体基因工程研究的相关文献分析基础之上,对主要使用的选择标记基因及其删除体系进行了综述,并对比了其优缺点,同时探讨了质体基因工程中所使用的报告基因,以期为现有选择标记基因及其删除体系的改进和开发提供一定参考,进一步推动质体基因工程,尤其是单子叶植物质体基因工程的发展。  相似文献   

12.
Reverse-genetic studies of chloroplast genes in the green alga Chlamydomonas reinhardtii have been hampered by the paucity of suitable selectable markers for chloroplast transformation. We have constructed a series of vectors for the targeted insertion and expression of foreign genes in the Chlamydomonas chloroplast genome. Using these vectors we have developed a novel selectable marker based on the bacterial gene aphA-6, which encodes an aminoglycoside phosphotransferase. The aphA-6 marker allows direct selection for transformants on medium containing either kanamycin or amikacin. The marker can be used to inactivate or modify specific chloroplast genes, and can be used as a reporter of gene expression. The availability of this marker now makes possible the serial transformation of the chloroplast genome of Chlamydomonas. Received: 26 October 1999 / Accepted: 28 December 1999  相似文献   

13.
【背景】萎锈灵抗性基因作为筛选标记在植物和真菌中得到广泛应用。【目的】构建可以使用萎锈灵作为筛选标记的香菇遗传转化技术。【方法】利用溶壁酶消化培养4 d的香菇菌株411-4的菌丝体获得原生质体,加入适量pL-cbx质粒和聚乙二醇溶液,混合物涂布于再生筛选培养基上,培养后挑选菌落进行验证试验。【结果】在原生质体数目108个和添加4μg质粒DNA的情况下,得到了40个抗性转化子。利用PCR实验和转代实验对转化子进行验证,结果显示38个转化子的抗性可稳定遗传,表明萎锈灵抗性基因整合进入了供试菌株的基因组中。【结论】利用香菇411-4菌株建立了一套运用萎锈灵抗性基因作为分子标记的遗传转化技术体系。  相似文献   

14.
Beauveria bassiana has been investigated for use in the biological control of several insects in agricultural practice. To understand the molecular basis of virulence and host specificity and to improve the entomopathogenicity of B. bassiana, we have developed a simple, highly efficient and reliable Agrobacterium-mediated transformation method for B. bassiana using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. Most transformants contained single copies of T-DNA and the T-DNA inserts were stably inherited after five generations. With this highly efficient transformation method for B. bassiana, we also obtained two putative T-DNA-tagged mutants that may have altered growth habits or virulence. Thus, the described protocol could provide a useful tool to manipulate the genetic make-up and to tag genes that may be important for virulence or growth and development of B. bassiana.  相似文献   

15.
Abstract Four plasmids were constructed by associating Escherichia coli and yeast selection markers and replication origins to a structural gene coding for aminoglycoside phosphotransferase (APH(3')) controlled by different flanking sequences. We used the two bacterial genes of Tn5 (APH(3')II) and Tn903 (APH(3')I) as such and the chimeric pSVneo (APH(3')II) and pNOSneo (APH(3')II) constructs, functional in mammalian and plant cells, respectively. Yeast clones resistant to G418 were obtained with all plasmids except with that bearing the bacterial APH(3')II gene. The three plasmids harbouring the functional APH genes, however, conferred different levels of G418 resistance to yeast.  相似文献   

16.
为建立更为安全、有效的双孢蘑菇遗传转化体系,构建了双孢蘑菇琥珀酸脱氢酶的铁硫蛋白亚基Agsdi1突变(His突变为Leu)表达载体pAgsdi1,并通过农杆菌介导方法转化双孢蘑菇W192,经萎锈灵筛选以及PCR扩增和MnlⅠ酶切验证后获得了转化菌株.验证结果表明,点突变的铁硫蛋白亚基Agsdi1可以作为双孢蘑菇有效的抗...  相似文献   

17.
A plant transformation and selection system has been developed utilizing a modified tubulin gene as a selectable marker. The vector constructs carrying a mutant alpha-tubulin gene from goosegrass conferring resistance to dinitroaniline herbicides were created for transformation of monocotyledonous and dicotyledonous plants. These constructs contained beta- and/or mutant alpha-tubulin genes driven either by ubiquitin or CaMV 35S promoter. The constructs were used for biolistic transformation of finger millet and soybean or for Agrobacterium-mediated transformation of flax and tobacco. Trifluralin, the main representative of dinitroaniline herbicides, was used as a selective agent in experiments to select transgenic cells, tissues and plantlets. Selective concentrations of trifluralin estimated for each species were as follows: 10 microM for Eleusine coracana, Glycine max, Nicotiana plumbaginifolia and Nicotiana sylvestris; 3 microM for Linum usitatissimum. PCR and Southern blotting analyses of transformed lines with a specific probe to nptII, alpha-tubulin or beta-tubulin genes were performed to confirm the transgenic nature of regenerated plants. Band specific for the mutant alpha-tubulin gene was identified in transformed plant lines. Results confirmed the stable integration of the mutant tubulin gene into the plant genomes. The present study clearly demonstrates the use of a plant mutant tubulin as a selective gene for plant transformation.  相似文献   

18.
Genomic and cDNA clones of the acetolactate synthase (ALS) gene of Chlamydomonas reinhardtii have been isolated from a mutant, c85-20 (Hartnett et al., 1987), that is resistant to high concentrations of sulfometuron methyl (SMM) and related sulfonylurea herbicides. Comparison of the ALS gene sequences from the wild-type and the SMM resistant (SMMr) strains revealed two amino acid differences in the mature enzyme, a lysine to threonine change at position 257 (K257T) and a leucine to valine change at position 294 (L294V). Transformation of wild-type C. reinhardtii with the mutant ALS gene produced no transformants with ability to grow in the presence of a minimum toxic concentration of SMM (3 microm). Substitution of the ALS promoter with the promoter of the C. reinhardtii Rubisco small subunit gene (RbcS2) permitted recovery of SMMr colonies. In vitro mutagenesis of the wild-type ALS gene to produce various combinations of mutations (K257T, L294V and W580L) indicated that the K257T mutation was necessary and sufficient to confer the SMMr phenotype. Optimum transformation rates were obtained with two constructs (pJK7 and pRP-ALS) in which all introns in the coding region were present. Rates of transformation with construct pJK7 were approximately 2.5 x 10-4 transformants/cell (i.e. one transformant for each of 4000 initial cells) using electroporation and 8.5 x 10-6 transformants/cell using the glass bead vortexing method. These results suggest that pJK7 and pRP-ALS can serve as important additional dominant selectable markers for the genetic transformation of C. reinhardtii.  相似文献   

19.
To transform grain sorghum (Sorghum bicolor (L.) Moench) with a visual reporter gene (gfp) and a target gene (tlp), three genotypes (two inbreds, Tx 430 and C401, and a commercial hybrid, Pioneer 8505) were used. We obtained a total of 1011 fertile transgenic plants from 61 independent callus lines, which were produced from 2463 zygotic immature embryos via Agrobacterium-mediated transformation. The reporter gene, gfp, encoding green fluorescent protein (GFP), was used as a visual screening marker, and the target gene, tlp, encoding thaumatin-like protein (TLP), was chosen for enhancing resistance to fungal diseases and drought. Both genes were under the control of the maize ubi 1 promoter in the binary vector pPZP201. A total of 320 plants showing GFP expression, derived from 45 calli, were selected and analyzed by Southern blot analysis. There was a 100% correlation between the GFP expression and the presence of the target gene, tlp, in these plants. Transgenic plants showing strong TLP expression were confirmed by Western blotting with antiserum specific for TLP. The transgene segregated in various ratios among progeny, which was confirmed by examining seedlings showing GFP fluorescence. The progeny also showed different copy numbers of transgenics. This report describes the successful use of GFP screening for efficient production of stably transformed sorghum plants without using antibiotics or herbicides as selection agents.  相似文献   

20.
Chemical-based selection for plant transformation is associated with a number of real and perceived problems that might be avoided through visual selection. We have used green fluorescent protein (GFP), as a visual selectable marker to produce transformed papaya (Carica papaya) plants following microprojectile bombardment of embryogenic callus. GFP selection reduced the selection time from 3 months on a geneticin (G418) antibiotic-containing medium to 3–4 weeks. Moreover, GFP selection increased the number of transformed papaya plants by five-to eightfold compared to selection in the presence of antibiotics. Overall, the use of GFP for selecting transgenic papaya lines improved our throughput for transformation by 15- to 24-fold while avoiding the drawbacks associated with the use of antibiotic resistance-based selection markers.Abbreviations BA: Benzyladenine - 2, 4-D: 2,4-Dichlorophenoxyacetic acid - GFP: Green fluorescent protein - IBA: Indole-3-butyric acid - NAA: -Naphthaleneacetic acid - MS: Murashige and Skoog plant culture mediumCommunicated by R.J. Rose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号