首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthetic, zwitterionic bacterial cell wall peptides—D -Gluγ-L-Lys, D -Gluγ-L-Lys-D -Ala, D -Gluγ-L-Lys-D -Ala-D -Ala, and L-Ala-D -Gluγ-L-Lys-D -Ala-D -Ala—have been investigated in the crystalline and aqueous solution state applying ir and Raman spectroscopy. Additionally, aqueous solutions of the tetra- and pentapeptide have been investigated by CD spectroscopic techniques. Apart from the dipeptide, whose spectral features were dominated by end-group vibrations, the corresponding ir and Raman active bands of the crystalline peptides in the amide and skeletal regions were found at similar wave numbers, thus suggesting an analogous three-dimensional structure of these compounds. Dominant amide A, I, II, and III bands near 3275, 1630, 1540, and 1220–1250 cm?1, respectively, in the ir are interpreted in favor of an intermolecularly hydrogen-bonded, β-like structure. The absence of any amide components near 1680–1690 cm?1, together with the presence of strong amide bands near 1630 cm?1, and weak bands near 1660 cm?1 in the ir, which, conversely, were found in the Raman spectra as weak and strong bands, but at corresponding wave numbers, is taken as strong evidence for the presence of the unusual, parallel-arranged β-structure. On the basis of comparative theoretical considerations, a parallel-arranged, “β-type ring” conformation [P. De Santis, S. Morosetti, and R. Rizzo (1974) Macromolecules 7 , 52–58] is hypothesized. The solubilized peptides exhibited distinct similarities with their crystalline counterparts in respect to frequency values and relative intensities of the corresponding ir and Raman-active amide I/I′ components, and of some Raman bands in the skeletal region. This is interpreted in terms of residual short-range order, persisting even in aqueous solution. We concluded that the peptides show a strong propensity to form hydrated, strongly associated aggregates in water. On the basis of amide I/I′ band positions, stable, intramolecular interactions via the amide groups are discarded for the solubilized peptides. Complementarily, the CD data obtained suggest the presence of weakly bent, “open-turn”-like structures for the tetra- and pentapeptide in aqueous solution.  相似文献   

2.
Poly-β-benzyl-L -aspartate (poly[Asp(OBzl)]) forms either a lefthanded α-helix, β-sheet, ω-helix, or random coil under appropriate conditions. In this paper the Raman spectra of the above poly[Asp(OBzl)] conformations are compared. The Raman active amide I line shifts from 1663 cm?1 to 1679 cm?1 upon thermal conversion of poly[Asp(OBzl)] from the α-helical to β-sheet conformation while an intense line appearing at 890 cm?1 in the spectrum of the α-helix decreases in intensity. The 890 cm?1 line also displays weak intensity when the polymer is dissolved in chloroform–dichloroacetic acid solution and therefore is converted to the random coil. This line probably arises from a skeletal vibration and is expected to be conformationally sensitive. Similar behavior in the intensity of skeletal vibrations is discussed for other polypeptides undergoing conformational transitions. The Raman spectra of two cross-β-sheet copolypeptides, poly(Ala-Gly) and poly(Ser-Gly), are examined. These sequential polypeptides are model compounds for the crystalline regions of Bombyx mori silk fibroin which forms an extensive β-sheet structure. The amide I, III, and skeletal vibrations appeared in the Raman spectra of these polypeptides at the frequencies and intensities associated with β-sheet homopolypeptides. Since the sequential copolypeptides are intermediate in complexity between the homopolypeptides and the proteins, these results indicate that Raman structure–frequency correlations obtained from homopolypeptide studies can now be applied to protein spectra with greater confidence. The perturbation scheme developed by Krimm and Abe for explaining the frequency splitting of the amide I vibrations in β-sheet polyglycine is applied to poly(L -valine), poly-(Ala-Gly), poly(Ser-Gly), and poly[Asp(OBzl)]. The value of the “unperturbed” frequency, V0, for poly[Asp(OBzl)] was significantly greater than the corresponding values for the other polypeptides. A structural origin for this difference may be displacement of adjacent hydrogen-bonded chains relative to the standard β-sheet conformation.  相似文献   

3.
M Rüegg  V Metzger  H Susi 《Biopolymers》1975,14(7):1465-1471
Infrared spectra of myoglobin, ribonuclease, lysozyme, α-chymotrypsin, α-lactalbumin, and β-lactoglobulin A were obtained in deuterium oxide solution in units of absorbance versus wavenumber from 1340 to 1750 cm?1. The spectra were resolved into Gaussian components by means of an iterative computer program. Resolved characteristic absorption peaks for the two infrared active amide I′ components of antiparallel chain-pleated sheets (β-structure) were obtained. The characteristic amide I′ peaks of α-helical regions and apparently unordered regions overlap in D2O solution. Absorptivity values for the resolved β-structure peak around 1630 cm?1 were estimated on the basis of the known structure of ribonuclease, lysozyme, and β-chymotrypsin. The β-structure content of β-lactoglobulin was estimated to be ca. 48% of α-lactalbumin ca. 18%, and of αs-casein close to zero. The results are in general agreement with conclusions drawn from circular dichroism and optical rotatory dispersion studies.  相似文献   

4.
The Raman spectra of β-lactoglobulin in the crystalline, freeze-dried, and solution states are compared. The spectra of the freeze-dried and crystalline proteins were practically identical. The conformationally sensitive amide III line appearing at 1242 cm?1 increased in intensity 30% upon dissolution of the protein in water which is interpreted as a conformational change in the disordered chains of the protein. This result appears to be a phenomenon for globular proteins containing a large disordered chain fraction. The alkaline denaturation of β-lactoglobulin was studied. When the pH was increased from 6.0 to 11.0, the amide III line shifted from 1242 to 1246 cm?1, broadened, and decreased in intensity. This is consistent with the conversion of β-sheet regions in β-lactoglobulin to the disordered conformation, as has been proposed by other investigators. At pH 13.5 the amide III shifts to 1257 cm?1 characteristic of a completely disordered protein, indicating that any remaining “core” of β-sheet has been randomized. Several changes in the intensities of the tyrosine and tryptophan vibrations accompany the denaturation. As the pH is increased from 6.0 (native state) to 11.0 (denatured state) the intensity ratio of two tyrosine ring vibrations, I855 cm?1/I830 cm?1, decreases from 1.0:0.9 to 1.0:1.3. The same ratio for a copolymer consisting of 95% glutamic acid and 5% tyrosine at pH 7.0, where the polymer forms a random coil exposing the tyrosine to the aqueous environment, is 1.0:0.62. This ratio more closely resembles that corresponding to β-lactoglobulin at pH 6.0 (native state) than pH 11.0 (denatured state) suggesting that the average tyrosine in the denatured state may be in a more hydrophobic environment than in the native state. A time-dependent polymerization of the denatured protein reported by other investigators and observed by us may account for the change in the tyrosine environment. A tryptophan vibration appearing at 833 cm?1 in the spectrum of the native state becomes weak as the pH is increased to 11.0. The intensity of this line may also reflect the local environment of the tryptophan residue.  相似文献   

5.
B G Frushour  J L Koenig 《Biopolymers》1974,13(9):1809-1819
Raman spectra of the pH denaturation of tropomyosin are presented. In the native state tropomyosin has an alpha-helical content of nearly 90%, but this value drops rapidly as the pH is raised above 9.5. The Raman spectrum of the native state is characterized by a strong amide I line appearing at 1655 cm?1, very weak scattering in the amide III region around 1250 cm?1, and a medium-intensity line at 940 cm?1. When the protein is pH-denatured, a strong amide III line appears at 1254 cm?1 and the 940 cm?1 line becomes weak. The intensities of the latter two lines are a sensitive measure of the alpha-helical and disordered chain content. These results are consistent with the helix-to-coil studies of the polypeptides. The Raman spectra of α-casein and prothrombin, proteins thought to have little or no ordered secondary structure, are investigated. The amide III regions of both spectra display strong lines at 1254 cm?1 and only weak scattering is observed at 940 cm?1, features characteristic of the denatured tropomyosin spectrum. The amide I mode of α-casein appears at 1668 cm?1, in agreement with the previously reported spectra of disordered polypeptides, poly-L -glutamic acid and poly-L -lysine at pH 7.0 and mechanically deformed poly-L -alanine.  相似文献   

6.
The i.r. spectra for aqueous solutions of sulfated glycosaminoglycans and model compounds in the transmittance “window” region of the solvent (1400-950 cm?1) are dominated by the strong and complex absorption centered at ~1230 cm?1 and associated with the antisymmetric stretching vibrations of the SO groups. Primary and secondary O-sulfate groups absorb at somewhat higher frequencies (1260-1200 cm?1) than N-sulfates (~1185 cm?1). Each sulfate band lends itself to quantitative applications, especially within a given class of sulfated polysaccharide. Laser-Raman spectra of heparin and model compounds have been obtained in aqueous solution and in the solid state. The most-prominent Raman peak (at ~1060 cm?1) is attributable to the symmetrical vibration of the SO groups, with N-sulfates emitting at somewhat lower frequencies (~1040 cm?1) than O-sulfates. The Raman pattern in the 950-800 cm?1 region (currently used in the i.r. for distinguishing between types of sulfate groups) also involves vibrations that are not localized only in the COS bonds.  相似文献   

7.
Outer and cytoplasmic membranes of Escherichia coli were prepared by a method based on isopyenic centrifugation on a sucrose gradient. The infrared spectra of solid films of these membranes were studied. The cytoplasmic membrane had an amide I band at 1657 cm?1 and an amide II band at 1548 cm?1. The outer membrane had a broad amide I band at 1631–1657 cm?1 and an amid II band at 1548 cm?1 with a shoulder at 1520–1530 cm?1. Upon deuteration, the amide I band of the cytoplasmic membrane shifted to 1648 cm?1, whereas the band at 1631 cm?1 of the outer membrane remained unchanged. After extraction of lipids with chloroform and methanol, the infrared spectra in the amide I and amide II regions of both membranes remained unchanged. Although the outer membrane specifically contained lipopolysaccharide, this could not account for the difference in the infrared spectra of outer and cytoplasmic membranes. It is concluded that a large portion of proteins in the outer membrane is a β-structured polypeptide, while this conformation is found less, if at all in the cytoplasmic membrane.  相似文献   

8.
The normal modes have been calculated for structures having the dihedral angles of the four β-turns of insulin. Frequencies are predicted in the amide I region near 1652 and 1680 cm?1. The former overlaps the α-helix band at 1658 cm?1 in the Raman spectrum, while the latter accounts for the hitherto unassignable band at 1681 cm?1. Calculated amide III frequencies extend above 1300 cm?1, providing a compelling assignment of the 1303-cm?1 band in insulin and similar bands in other globular proteins.  相似文献   

9.
Fourier transform infrared (FT‐IR) spectroscopy combined with 2D correlation spectroscopy has been used to offer some information about stability and structure of some soluble elastins. Temperature has been chosen as the perturbation to monitor the infrared behavior of various soluble elastins, namely, α‐elastin p, α‐elastin, and k‐elastin. In the 3800–2700 cm?1 region, the H‐containing groups were analyzed. The bonded hydroxyls are found to decrease prior to the NH‐related hydrogen bonds and also to the conformational reorganization of hydrocarbon chains. The transition temperatures were evaluated and they were found to agree with those obtained from DSC data. The FTIR spectra and their 2nd derivatives denote that α‐ elastins exhibited amide‐I, ‐II and ‐III bands at 1656, 1539 and 1236 cm?1, respectively, while in k‐elastin these bands were found at 1652 cm?1 for amide I, 1540 cm?1 for amide II and 1248 cm?1 for amide III. The macroscopic IR finger‐print method, which combines: general IR spectra, secondary derivative spectra, and 2D‐IR correlation spectra, is useful to discriminate different elastins. Thus using the differences of the position and intensity of the bands from “fingerprint region” of studied elastins, which include the peaks assigned to C?O, C? C groups from α‐helix, β‐turn, and the peaks assigned to the amide groups, it is possible to identify and discriminate elastins from each others. Furthermore, the pattern of 2D‐IR correlation spectra under thermal perturbation, allow their direct identification and discrimination. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1072–1084, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
P. C. Painter  J. L. Koenig 《Biopolymers》1976,15(11):2155-2166
The Raman spectra of ovalbumin, ovomucoid, and conalbumin are reported. Spectral shifts in the conformationally sensitive amide I and amide III lines as a result of thermal denaturation indicate the formation of intermolecular β- sheets. A medium intensity line at 1260 cm?1 in the spectra of ovomucoid and ribonuclease is demonstrated to contain a substantial contribution from tyrosine residues.  相似文献   

11.
The Raman spectra of Bence-Jones proteins (BJP) were measured for their native and denatured states. All of the native BJPs investigated gave amide I at 1670–1675 cm?1 and amide III at 1242–1246 cm?1. Although the amide I was shifted to 1667 cm?1 upon the LiBr, acid, and thermal denaturation, as expected, the amide III frequency was unaltered, indicating that the antiparallel β- and disordered structures of BJP provide amide III at almost the same frequencies. The intensity of the 880-cm?1 line of native BJP was relatively intense compared with that of amino acid mixed solution in which the mole ratios of Trp, Phe, and Tyr were adjusted to reproduce the corresponding ratios of BJP. However, the intensity was evidently reduced upon LiBr, acid, and thermal denaturation, approaching that of the amino acid mixture. Thus, the intensity of the 880-cm?1 line is proposed as a practical probe for the environment of Trp residues. The pH dependence of the intensity of the 880-cm?1 line suggests that one of two buried Trp residues is exposed between pH 4 and 3.2 and the other between pH 3.2 and 1.4. The variable fragment (VL) of BJP (Tod) exhibited a S? S stretching Raman line at 525 cm?1. Provided that the crystallographic data of the VL of BJP is applicable to VL of BJP (Tod), the 525 cm?1 of the S? S stretching frequency should be assigned to a TGG conformation of linkage, but not to the AGT or AGG conformation. This supports Sugeta's model rather than Scheraga's model.  相似文献   

12.
Raman spectra are presented for sarcoplasmic reticulum membranes. Interpretation of the 1000–1130 cm?1 region of the spectrum indicates that the sarcoplasmic reticulum membrane may be more fluid than erythrocyte membranes that have been examined by the same technique. The fluidity of the membrane also manifests itself in the amide I portion of the membrane spectrum with a strong 1658 cm?1 band characteristic of CC stretching in hydrocarbon side chains exhibiting cis conformation. This band is unaltered in intensity and position in H2O and in 2H2O thus obscuring amide I protein conformation. Of particular interest is the appearance of strong, resonantly enhanced bands at 1160 and 1527 cm?1 attributable to membrane-associated carotenoids.  相似文献   

13.
The Raman spectra of collagen, gelatin, and elastin are presented. The Raman lines in the latter two spectra are assigned by deuterating the amide N-H groups in gelatin and by studying the superposition spectra of the constituent amino acids. Two lines appear at 1271 and 1248 cm?1 in the spectra of collagen and gelatin that can be assigned to the amide III mode. Possibly, the appearance of two amide III lines is related to the biphasic nature of the tropocollagen molecule, i.e., proline-rich (nonpolar) and proline-poor (polar) regions distributed along the chain. The melting, or collagen-to-gelatin transition, in water-soluble calf skin collagen is studied and the 1248-cm?1 amide III line is assigned to the 31 helical regions of the tropocollagen molecule. Elastin is thought to be mostly random and the Raman spectrum confirms this assertion. Strong amide I and III lines appear at 1668 and 1254 cm?1, respectively, and only weak scattering is observed at 938 cm?1. These features have been shown to be characteristic of the disordered conformation in proteins.  相似文献   

14.
The α-helical from of poly(L -glutamic acid) [α-poly(Glu)] gives rise to the same amide I and III lines as α-poly(γ-benzyl-L -glutamate) at 1652 and 1296 cm?1, respectively. The latter is a superposition of the amide III line near 1290 cm?1 and a line deu to vibrational made of CH2 groups of the side chain near 1300 cm?1. A line at 924 cm?1 is tentatively identified as characteristics of α-poly(Glu). Both the β1- and β2- forms of poly(Glu) give rise to characteristic of β-amide. III frequencies that are similar because of their similar backbone structures. Differences in the conformations of their side chains and in the environments of the backbone are reflected in the region 800–1200 cm?1 and in the amide I. A line at 1042 cm?1 and a pair at 1021 and 1059 cm?1 are tentatively assigned as characteristic of β1-poly(Glu) and β2-poly(Glu), respectively. The α-β2 transition in poly(L -Glu78L -Val22) is shown by the appearance of all the β2-characteristic lines in the thermally transformed sample. The same features observed in poly(L -Glu95L -Val5) also indicate that the α-β2 transition of poly(Glu) is facilitated by the presence of L -valine and that the content of L -valine is not critical for this purpose. Investigation of the Raman spectra of the calcium, strontium, barium and sodium slats of poly(Glu) shows that these salts, under the conditions of preparation used, all the have random-coil conformations.  相似文献   

15.
C24H34N2O9, orthorhombic, P212121; a = 39.432 (10), b = 14.061 (5), c = 4.850 (2) Å, M = 494 a.m.u., Z = 4, Dm = 1.22 g cm?3, Dx = 1.22 g cm?3, R = 0.13 for 1205 observed reflections after refinement with isotropic thermal factors. The urethane and amide bonds are in the trans configuration, as well as all the ester groups. The φ and ψ angles of the L -glutamyl residues fall in the β-structure region of the Ramachandran's plot; the molecule is rather flat with the amide plane almost parallel to the c axis along which two hydrogen bonds hold the molecules together to form long rows in a “parallel pleated-sheet” fashion.  相似文献   

16.
We demonstrate a novel bio‐spectroscopic technique, “simultaneous Raman/GFP microspectroscopy”. It enables organelle specific Raman microspectroscopy of living cells. Fission yeast, Schizosaccharomyces pombe, whose mitochondria are green fluorescence protein (GFP) labeled, is used as a test model system. Raman excitation laser and GFP excitation light irradiate the sample yeast cells simultaneously. GFP signal is monitored in the anti‐Stokes region where interference from Raman scattering is negligibly small. Of note, 13 568 Raman spectra measured from different points of 19 living yeast cells are categorized according to their GFP fluorescence intensities, with the use of a two‐component multivariate curve resolution with alternate least squares (MCR‐ALS) analysis in the anti‐Stokes region. This categorization allows us to know whether or not Raman spectra are taken from mitochondria. Raman spectra specific to mitochondria are obtained by an MCR‐ALS analysis in the Stokes region of 1389 strongly GFP positive spectra. Two mitochondria specific Raman spectra have been obtained. The first one is dominated by protein Raman bands and the second by lipid Raman bands, being consistent with the known molecular composition of mitochondria. In addition, the second spectrum shows a strong band of ergosterol at 1602 cm?1, previously reported as “Raman spectroscopic signature of life of yeast.”  相似文献   

17.
The origin of the A to B transition in DNA fibers and films   总被引:6,自引:0,他引:6  
We have studied the hydration of Na-DNA and Li-DNA fibers and films, measuring water contents, x-ray fiber diffraction patterns, low-frequency Raman spectra (below 100 cm?1), high-frequency Raman spectra (600–1000 cm?1), and swelling, as a function of relative humidity. Most samples gain weight equilibrium (though not conformational equilibrium) in one day. The volume occupied by a base pair as the DNA is hydrated (obtained from the x-ray and swelling data) shows anomalies for the case of Na-DNA in the region where the A-form occurs. Our Raman and x-ray data reproduce the well-known features of the established conformational transitions, but we find evidence in the Raman spectra and optical properties of a transition to what may be a disordered B-like conformation in Na-DNA below 40% relative humidity. We have studied the effects of crystallinity on the A to B transition. We find that the transition to the B-form is impeded in highly crystalline samples. In most samples, the transition occurs in three days (after putting the sample at 92% relative humidity) but in highly crystalline samples, the transition may take months. By comparing the high-frequency Raman spectra of highly ordered and disordered films, we show that the extent of crystallinity controls the amount of A-DNA formed when ethanol is used to dehydrate the films. We show that rapid dehydration (by laser heating) does not result in a B to A transition. A fiber that gives A-type x-ray reflections probably contains B-like material in noncrystalline regions. The low-frequency Raman spectrum is dominated by a band at about 25 cm?1 in both Na- and Li-DNA. Another band is seen near 35 cm?1 in Na-DNA at humidities where the sample is in the A-form. In contrast to earlier reports, we find that the Raman intensity does not depend on fiber orientation relative to the scattering vector. The “35-cm?1” band is largely depolarized (i.e. vertical polarization incident and horizontal polarization scattered, VH, or vice versa, HV) while the “25-cm?1” band appears in both VV, VH and HV polarizations. These bands are all weaker in HH polarization. The “25-cm?1” band may be due to a shearing motion of the phosphates and their associated counterions, while the “35-cm?1” band may be characteristic of A-DNA crystallites. We consider mass-loading, relaxational coupling to the hydration shell, and softening of interatomic potentials as possible explanations of the observed softening of the low-frequency Raman bands on hydration. Relaxation data suggest that the added water binds tightly (on these time scales) and a mass-loading model accounts for the observed softening rather well. We conclude that the A to B transition is not driven by softening of the “25-cm?1” band. Rather, it is most probably a consequence of crystal-packing forces, with the more regular A-form favored in crystals when these forces are strong.  相似文献   

18.
W T Wilser  D B Fitchen 《Biopolymers》1974,13(7):1435-1445
Laser Raman spectra are reported for solid films cast from a series of solutions containing mixtures of right- and left-handed α-helices of poly-γ-benzyl-L - and D -glutamate. Procedures were established for producing spectra that were reproducible in position to ±0.3 cm?1 and in relative intensity to a few percent for features of interest. Spectra for the pure L and pure D polymers were identical, as expected. Several small but definite spectral changes appear in the mixtures, reaching a maximum for the racemic 50:50 mixture. The changes are a shift of ?1.4 cm?1 in the amide I peak at 1650.5 cm?1; a shift of about ?5 cm?1 in the partially resolved amide III peak at 1291 cm?1; a shift of +2.5 cm?1 in the benzyl peak at 3062.5 cm?1; changes in relative intensity of as much as 50% in several regions; and the marked enhancement of several peaks, particularly that at 254 cm?1. These changes are discussed in terms of side-chain interactions in the packing of right- and left-handed helices.  相似文献   

19.
Comparative CD and Fourier transform ir (FTIR) spectroscopic data on N-Boc protected linear peptides with or without the (Pro-Gly) β-turn motif (e.g., Boc-Tyr-Pro-Gly-Phe-Leu-OH and Boc-Tyr-Gly-Pro-Phe-Leu-OH) are reported herein. The CD spectra, reflecting both backbone and aromatic contributions, were not found to be characteristic of the presence of β-turns. In the amide I region of the FTIR spectra, analyzed by self-deconvolution and curve-fitting methods, the β-turn band shewed up between 1639 and 1633 cm?1 in trifluoroethanol (TFE) but only for models containing the (Pro-Gly) core. This band war-also present in the spectra in chloroform but absent in dimethylsulfoxide. These findings, in agreement with recent ir data on cyclic models and 310-helical polypeptides and protein in D2O [see S. J. Prestrelski, D. M. Byler, and M. P. Thompson (1991), International Journal of Peptide and Protein Research, Vol. 37, pp. 508–512; H. H. Mantsch, A. Perczel. M. Hollósi, and G. D. Fasman (1992), FASEB Journal, Vol. 6, p. A341; H. H. Mantsch. A. Perczel, M. Hollósi, and G. Fasman (1992), Biopolymers. Vol. 33, pp. 201–207; S. M. Miick, G. V. Martinez, W. R. Fiori, A. P. Tedd, and G. L. Millhauser (1992). Nature, Vol. 359, pp. 653–655], suggest that the amide I band, with a major contribution from the acceptor C ? O of the 1 ← 4 intramolecular H bond of β-turns, appears near or below 1640 cm?1, rather than above 1660 cm?1. In TFE, bands between 1670 and 1660 cm?1 are mainly due to “free” carbonyls, that is, C ? O's of amides that are solvated but not involved in the characteristic H bonds of periodic secondary structures or β-turns. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Raman spectroscopy has been used in investigating the conformational transitions of poly-L -alanine (PLA) induced by mechanical deformation. We see evidence of the alpha-helical, antiparallel beta-sheet, and a disordered conformation in PLA. The disordered conformation has not been discussed in previous infrared and X-ray diffraction investigations and may have local order similar to the left-handed 31 poly glycine helix. The amide III mode in the Raman spectrum of PLA is more sensitive than the amide I and II modes to changes in secondary structure of the polypeptide chain. Several lines below 1200 cm?1 are conformationally sensitive and may generally be useful in the analysis of Raman spectra of proteins. A line at 909 cm?1 decreases in intensity after deformation of PLA. In general only weak scattering is observed around 900 cm?1 in the Raman spectra of antiparallel beta-sheet polypeptides. The Raman spectra of the amide N–H deuterated PLA and poly-L -leucine (PLL) in the alpha-helical conformation and poly-L -valine (PLV) in the beta-sheet conformation are presented. Splitting is observed in the amide III mode of PLV and the components of this mode are assigned. The Raman spectrum of an alpha-helical random copolymer of L -leucine and L -glutamic acid is shown to be consistent with the spectra of other alphahelical polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号