首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes for the enzymes that metabolize galactose in Saccharomyces cerevisiae are strongly induced by galactose and tightly repressed by glucose. Because glucose also represses mitochondrial activity, we examined if derepression of the GAL1 galactokinase gene requires physiologically active mitochondria. The effect of mitochondria on the expression of GAL1 was analyzed by a novel approach in which the activity of the organelles was altered by functional expression of URF13, a mitochondrial protein unique to the Texas-type cytoplasmic male sterility phenotype in maize. Mitochondrial targeting and functional expression of the URF13 protein in yeast result in a decrease of the mitochondrial membrane potential similar to those observed in cells treated with mitochondrial inhibitors such as antimycin A or sodium azide. Activation of URF13 in galactose-induced cells results in the inhibition of GAL1 expression in the absence of repressing concentrations of glucose. Our data reveal the existence of a regulatory pathway that connects the derepression of the GAL1 gene with mitochondrial activity.  相似文献   

2.
Understanding the structure and functionality of eukaryotic gene regulation systems is of fundamental importance in many areas of biology. While most recent studies focus on static or short-term properties, measuring the long-term dynamics of these networks under controlled conditions is necessary for their complete characterization. We demonstrate adaptive dynamics in a well-known system of metabolic regulation, the GAL system in the yeast S. cerevisiae. This is a classic model for a eukaryotic genetic switch, induced by galactose and repressed by glucose. We followed the expression of a reporter gfp under a GAL promoter at single-cell resolution in large population of yeast cells. Experiments were conducted for long time scales, several generations, while controlling the environment in continuous culture. This combination enabled us, for the first time, to distinguish between transient responses and steady state. We find that both galactose induction and glucose repression are only transient responses. Over several generations, the system converges to a single robust steady state, independent of external conditions. Thus, at steady state the GAL network loses its hallmark functionality as a sensitive carbon source rheostat. This result suggests that, while short-term dynamics are determined by specific modular responses, over long time scales inter-modular interactions take over and shape a robust steady state response of the regulatory system.  相似文献   

3.
Controlled transcription of the yeast regulatory gene GAL80   总被引:12,自引:0,他引:12  
H Shimada  T Fukasawa 《Gene》1985,39(1):1-9
  相似文献   

4.
5.
6.
7.
8.
9.
10.
The Cryptococcus neoformans GAL7 gene and its use as an inducible promoter   总被引:1,自引:1,他引:0  
A Cryptococcus neoformans galactose auxotroph was created by ultraviolet light mutagenesis and complemented with a C. neoformans genomic library. The translated sequence of the complementing DNA revealed a high degree of simlarity to a number of UDP glucose-D-gatactose-1-phosphate uridylyitransferases. Expression of C. neoformans GAL7 mRNA followed a pattern similar to Saccharomyces cerevisiae expression; it was first observed within 2.5 min of induction and fully induced by 30 min. The gene was completely repressed in the presence of glucose. The GAL7 promoter was isolated and used to construct a promoter cassette. Two genes were tested in this cassette for galactose regulation by creating GAL7 promoter fusions with their coding regions. MFα, which encodes a pheromone, was found to produce filaments only in transformants that were induced by galactose. A second gene, β-glucuronidase (gusA), which is a commonly used reporter gene, was tested and also found to be expressed. When the GAL7 p::GUS fusion was used to quantify inducibitity of the GAL7 promoter, the level of enzyme activity was at least 500-fold greater for cells grown in galactose than for cells grown in glucose. The GAL7 promoter is the first inducible promoter characterized in C neoformans and the GUS gene is the first heterologous gene shown to be expressed in this yeast pathogen.  相似文献   

11.
T P St John  R W Davis 《Cell》1979,16(2):443-452
Multiple nitrocellulose DNA filter replicas of plaques of in vitro generated recombinants of phage lambda and Saccharomyces cerevisiae have been screened by hybridization with 32P-labeled cDNA probes. These probes were representative of total poly(A)-containing RNA of yeast cells grown on acetate, galactose, glucose or maltose. This approach allows the use of specific differences in total RNA populations as probes for gene isolation. Five "galactose-induced" clones have been isolated. Expression of the RNA coding regions on at least two cloned sequences, Sc481 and Sc482, is regulated by genes known to control the expression of the structural genes required for the conversion of exogenous galactose to endogenous glucose-1-phosphate. One cloned sequence, Sc484, is expressed during growth on all carbon sources except glucose, and is not under control by the galactose regulatory genes. This clone contains a sequence that is repeated 3 times in the yeast genome. The cloned fragment Sc481 contains coding regions for all or part of three galactose"induced RNAs and may correspond to the GAL 1, GAL 7, GAL 10 gene cluster region of chromosome II.  相似文献   

12.
13.
The CDC25 gene is transcribed at a very low level in S. cerevisiae cells. We have studied the effects of an overexpression of this regulatory gene by cloning either the whole CDC25 open reading frame (pIND25-2 plasmid) or its 3' terminal portion (pIND25-1 plasmid) under the control of the inducible strong GAL promoter. The strain transformed with pIND25-2 produced high levels of CDC25 specific mRNA, induced by galactose. This strain does not show any apparent alteration of growth, both in glucose and in galactose. Instead the yeast cells transformed with pIND25-1, that overexpress the 3' terminal part of CDC25 gene, grow very slowly in galactose medium, while they grow normally in glucose medium. The nucleotides were extracted from transformed cells, separated by HPLC and quantitated. The ATP/ADP and GTP/GDP ratios were almost identical in control and in pIND25-2 transformed strains growing in glucose and in galactose, while the strain that overexpresses the 3' terminal portion of CDC25 gene showed a decrease of ATP/ADP ratio and a partial depletion of the GTP pool. The disruption of RAS genes was only partially able to 'cure' this phenotype. A ras2-ts1, ras1::URA3 strain, transformed with pIND25-1 plasmid, was able to grow in galactose at 36 degrees C. These results suggest that the carboxy-terminal domain of the CDC25 protein could stimulate an highly unregulated GTPase activity in yeast cells by interacting not only with RAS gene products but also with some other yeast G-proteins.  相似文献   

14.
15.
16.
We placed the Saccharomyces cerevisiae GAL4 gene under control of the galactose regulatory system by fusing it to the S. cerevisiae GAL1 promoter. After induction with galactose, GAL4 is now transcribed at about 1,000-fold higher levels than in wild-type S. cerevisiae. This regulated high-level expression has enabled us to tentatively identify two GAL4-encoded proteins.  相似文献   

17.
18.
Global role for chromatin remodeling enzymes in mitotic gene expression   总被引:27,自引:0,他引:27  
Krebs JE  Fry CJ  Samuels ML  Peterson CL 《Cell》2000,102(5):587-598
Regulation of eukaryotic gene expression requires ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, and histone acetyltransferases, such as Gcn5p. Here we show that SWI/SNF remodeling controls recruitment of Gcn5p HAT activity to many genes in late mitosis and that these chromatin remodeling enzymes play a role in regulating mitotic exit. In contrast, interphase expression of GAL1, HIS3, PHO5, and PHO8 is accompanied by SWI/SNF-independent recruitment of Gcn5p HAT activity. Surprisingly, prearresting cells in late mitosis imposes a requirement for SWI/SNF in recruiting Gcn5p HAT activity to the GAL1 promoter, and GAL1 expression also becomes dependent on both chromatin remodeling enzymes. We propose that SWI/SNF and Gcn5p are globally required for mitotic gene expression due to the condensed state of mitotic chromatin.  相似文献   

19.
20.
Genetic regulatory networks respond dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilize galactose as an alternative carbon and energy source, in the absence of glucose in the environment. We present a dynamic model for GAL system in Saccharomyces cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. We then characterize the memory of the GAL system as the domain of attraction of the steady states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号