首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza A virus (IAV) assembly and budding on host cell surface plasma membrane requires actin cytoskeleton reorganization. The underlying molecular mechanism involving actin reorganization remains unclarified. In this study, we found that the natural antiviral compound petagalloyl glucose (PGG) inhibits F-actin reorganization in the host cell membrane during the late stage of IAV infection, which are associated with the suppression of total cofilin-1 level and its phosphorylation. Knock-down of cofilin-1 reduces viral yields. These findings provide the first evidence that cofilin-1 plays an important role in regulating actin reorganization during IAV assembly and budding.  相似文献   

2.
《Biophysical journal》2022,121(21):4229-4238
The assembly and budding of newly formed human immunodeficiency virus-1 (HIV-1) particles occur at the plasma membrane of infected cells. Although the molecular basis for viral budding has been studied extensively, investigation of its spatiotemporal characteristics has been limited by the small dimensions (~100 nm) of HIV particles and the fast kinetics of the process (a few minutes from bud formation to virion release). Here we applied ultra-fast atomic force microscopy to achieve real-time visualization of individual HIV-1 budding events from wild-type (WT) cell lines as well as from mutated lines lacking vacuolar protein sorting-4 (VPS4) or visceral adipose tissue-1 protein (VTA1). Using single-particle analysis, we show that HIV-1 bud formation follows two kinetic pathways (fast and slow) with each composed of three distinct phases (growth, stationary, decay). Notably, approximately 38% of events did not result in viral release and were characterized by the formation of short (rather than tall) particles that slowly decayed back into the cell membrane. These non-productive events became more abundant in VPS4 knockout cell lines. Strikingly, the absence of VPS4B, rather than VPS4A, increased the production of short viral particles, suggesting a role for VPS4B in earlier stages of HIV-1 budding than traditionally thought.  相似文献   

3.
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.  相似文献   

4.
Role of HIV-1 Gag domains in viral assembly   总被引:13,自引:0,他引:13  
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.  相似文献   

5.
Mansouri S  Kutky M  Hudak KA 《PloS one》2012,7(5):e36369
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.  相似文献   

6.
Dynamic interactions between human immunodeficiency virus-1 (HIV-1) and the macrophage govern the tempo of viral dissemination and replication in its human host. HIV-1 affects macrophage phenotype, and the macrophage, in turn, can modulate the viral life cycle. While these processes are linked to host-cell function and survival, the precise intracellular pathways involved are incompletely understood. To elucidate such dynamic virus-cell events, we employed pulsed stable isotope labeling of amino acids in cell culture. Alterations in de novo protein synthesis of HIV-1 infected human monocyte-derived macrophages (MDM) were examined after 3, 5, and 7 days of viral infection. Synthesis rates of cellular metabolic, regulatory, and DNA packaging activities were decreased, whereas, those affecting antigen presentation (major histocompatibility complex I and II) and interferon-induced antiviral activities were increased. Interestingly, enrichment of proteins linked to chromatin assembly or disassembly, DNA packaging, and nucleosome assembly were identified that paralleled virus-induced cytopathology and replication. We conclude that HIV-1 regulates a range of host MDM proteins that affect its survival and abilities to contain infection.  相似文献   

7.
Retroviruses need to bud from producer cells to spread infection. To facilitate its budding, some virus hijacks the multivesicular body (MVB) pathway that is normally used to cargo and degrade ubiquitylated cellular proteins, through interaction between the late domain of Gag polyproteins and the components of MVB machinery. In this study, we demonstrated that TANK-binding kinase 1 (TBK1) directly interacted with VPS37C, a subunit of endosomal sorting complex required for transport-I (ESCRT-I) in the MVB pathway, without affecting the ultrastructure or general function of MVB. Interestingly, overexpression of TBK1 attenuated, whereas short hairpin RNA interference of TBK1 enhanced HIV-1 pseudovirus release from Vero cells in type I IFN (IFN-I)-independent manner. Down-regulation of TBK1 by short hairpin RNA in TZM-bl cells also enhanced live HIV-1 NL4-3 or JR-CSF virus budding without involvement of IFN-I induction. Furthermore, infection of TBK1-deficient mouse embryonic fibroblast cells with a chimeric murine leukemia virus/p6, whose PPPY motif was replaced by PTAP motif of HIV-1, showed that lack of TBK1 significantly enhanced PTAP-dependent, but not PPPY-dependent retrovirus budding. Finally, phosphorylation of VPS37C by TBK1 might regulate the viral budding efficiency, because overexpression of the kinase-inactive mutant of TBK1 (TBK1-K38A) in Vero cells accelerated HIV-1 pseudovirus budding. Therefore, through tethering to VPS37C of the ESCRT-I complex, TBK1 controlled the speed of PTAP-dependent retroviral budding through phosphorylation of VPS37C, which would serve as a novel mechanism of host cell defense independent of IFN-I signaling.  相似文献   

8.
Strack B  Calistri A  Craig S  Popova E  Göttlinger HG 《Cell》2003,114(6):689-699
HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar protein sorting (Vps) machinery. We now show that HIV Gag p6 contains a second region involved in L domain function that binds AIP1, a homolog of the yeast class E Vps protein Bro1. Further, AIP1 interacts with Tsg101 and homologs of a subunit of the yeast class E Vps protein complex ESCRT-III. AIP1 also binds to the L domain in EIAV p9, and this binding correlates perfectly with L domain function. These observations identify AIP1 as a component of the viral budding machinery, which serves to link a distinct region in the L domain of HIV-1 p6 and EIAV p9 to ESCRT-III.  相似文献   

9.
Zuo T  Liu D  Lv W  Wang X  Wang J  Lv M  Huang W  Wu J  Zhang H  Jin H  Zhang L  Kong W  Yu X 《Journal of virology》2012,86(10):5497-5507
The HIV-1 viral infectivity factor (Vif) protein is essential for viral replication. Vif recruits cellular ElonginB/C-Cullin5 E3 ubiquitin ligase to target the host antiviral protein APOBEC3G (A3G) for proteasomal degradation. In the absence of Vif, A3G is packaged into budding HIV-1 virions and introduces multiple mutations in the newly synthesized minus-strand viral DNA to restrict virus replication. Thus, the A3G-Vif-E3 complex represents an attractive target for development of novel anti-HIV drugs. In this study, we identified a potent small molecular compound (VEC-5) by virtual screening and validated its anti-Vif activity through biochemical analysis. We show that VEC-5 inhibits virus replication only in A3G-positive cells. Treatment with VEC-5 increased cellular A3G levels when Vif was coexpressed and enhanced A3G incorporation into HIV-1 virions to reduce viral infectivity. Coimmunoprecipitation and computational analysis further attributed the anti-Vif activity of VEC-5 to the inhibition of Vif from direct binding to the ElonginC protein. These findings support the notion that suppressing Vif function can liberate A3G to carry out its antiviral activity and demonstrate that regulation of the Vif-ElonginC interaction is a novel target for small-molecule inhibitors of HIV-1.  相似文献   

10.
Host cell factors can either positively or negatively regulate the assembly and egress of HIV-1 particles from infected cells. Recent reports have identified a previously uncharacterized transmembrane protein, tetherin/CD317/BST-2, as a crucial host restriction factor that acts during a late budding step in HIV-1 replication by inhibiting viral particle release. Although tetherin has been shown to promote the retention of nascent viral particles on the host cell surface, the precise molecular mechanisms that occur during and after these tethering events remain largely unknown. We here report that a RING-type E3 ubiquitin ligase, BCA2 (Breast cancer-associated gene 2; also called Rabring7, ZNF364 or RNF115), is a novel tetherin-interacting host protein that facilitates the restriction of HIV-1 particle production in tetherin-positive cells. The expression of human BCA2 in “tetherin-positive” HeLa, but not in “tetherin-negative” HOS cells, resulted in a strong restriction of HIV-1 particle production. Upon the expression of tetherin in HOS cells, BCA2 was capable of inhibiting viral particle production as in HeLa cells. The targeted depletion of endogenous BCA2 by RNA interference (RNAi) in HeLa cells reduced the intracellular accumulation of viral particles, which were nevertheless retained on the plasma membrane. BCA2 was also found to facilitate the internalization of HIV-1 virions into CD63+ intracellular vesicles leading to their lysosomal degradation. These results indicate that BCA2 accelerates the internalization and degradation of viral particles following their tethering to the cell surface and is a co-factor or enhancer for the tetherin-dependent restriction of HIV-1 release from infected cells.  相似文献   

11.
脂筏在病毒感染中的作用   总被引:3,自引:0,他引:3  
脂筏是细胞膜上富含鞘脂和胆固醇的微区结构,广泛分布于细胞的膜系统.脂筏中含有诸多信号分子和免疫受体,在细胞的生命活动中扮演非常重要的角色.更为重要的是,脂筏为细胞表面发生的蛋白质-蛋白质和蛋白质-脂类分子间的相互作用提供了平台.研究表明,很多病毒可以利用细胞膜表面的脂筏结构介导其侵入宿主细胞,一些病毒可以借助脂筏结构完成病毒颗粒的组装和出芽.本文将综述不同类型的病毒如SV40、HIV等借助脂筏完成入侵以及流感病毒等利用脂筏完成组装和出芽的证据及机理,并概述目前研究病毒与脂筏相互作用的方法及存在的问题.深入研究脂筏在病毒感染中的作用,将有助于对病毒与宿主细胞的相互作用的理解,从而可能发现新的、有效的对抗病毒的方法。  相似文献   

12.
HIV-1 assembly and release are believed to occur at the plasma membrane in most host cells with the exception of primary macrophages, for which exclusive budding at late endosomes has been reported. Here, we applied a novel ultrastructural approach to assess HIV-1 budding in primary macrophages in an immunomarker-independent manner. Infected macrophages were fed with BSA-gold and stained with the membrane-impermeant dye ruthenium red to identify endosomes and the plasma membrane, respectively. Virus-filled vacuolar structures with a seemingly intracellular localization displayed intense staining with ruthenium red, but lacked endocytosed BSA-gold, defining them as plasma membrane. Moreover, HIV budding profiles were virtually excluded from gold-filled endosomes while frequently being detected on ruthenium red-positive membranes. The composition of cellular marker proteins incorporated into HIV-1 supported a plasma membrane-derived origin of the viral envelope. Thus, contrary to current opinion, the plasma membrane is the primary site of HIV-1 budding also in infected macrophages.  相似文献   

13.
Liu B  Yu X  Luo K  Yu Y  Yu XF 《Journal of virology》2004,78(4):2072-2081
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral evasion of the host antiviral protein APOBEC3G, also known as CEM15. Vif mutant but not wild-type HIV-1 viruses produced in the presence of APOBEC3G have been shown to undergo hypermutations in newly synthesized viral DNA upon infection of target cells, presumably resulting from C-to-U modification during minus-strand viral DNA synthesis. We now report that HIV-1 Vif could induce rapid degradation of human APOBEC3G that was blocked by the proteasome inhibitor MG132. The efficiency of Vif-induced downregulation of APOBEC3G expression depended on the level of Vif expression. A single amino acid substitution in the conserved SLQXLA motif reduced Vif function. Vif proteins from distantly related primate lentiviruses such as SIVagm were unable to suppress the antiviral activity of human APOBEC3G or the packaging of APOBEC3G into HIV-1 Vif mutant virions, due to a lack of interaction with human APOBEC3G. In the presence of the proteasome inhibitor MG132, virion-associated Vif increased dramatically. However, increased virion packaging of Vif did not prevent virion packaging of APOBEC3G when proteasome function was impaired, and the infectivity of these virions was significantly reduced. These results suggest that Vif function is required during virus assembly to remove APOBEC3G from packaging into released virions. Once packaged, virion-associated Vif could not efficiently block the antiviral activity of APOBEC3G.  相似文献   

14.
The Gag polyprotein is the major structural protein of human immunodeficiency virus-1 (HIV-1) constituting the viral core. Between translation on cytoplasmic polysomes and assembly into viral particles at the plasma membrane, it specifically captures the RNA genome of the virus through binding RNA structural motifs (packaging signals -Psi) in the RNA. RNA is believed to be a structural facilitator of Gag assembly. Using a combined approach of immunofluorescence detection of Gag protein and in situ hybridisation detection of viral genomic RNA, we demonstrate that Gag protein colocalises early after expression with Psi+ RNA in the perinuclear region and also colocalises with centrioles. Colocalised RNA and protein subsequently traffic through the cytoplasm to the plasma membrane of the cell. Gag expressed from Psi- RNA diffuses throughout the cell. It is not found at centrioles and shows delayed cytoplasmic colocalisation with the RNA genome. RNA capture through Psi does not influence binding of Gag to microfilaments. Gag does not bind to tubulin during export. The presence of the packaging signal may coordinate capture of Psi+ RNA by Gag protein at the centrosome followed by their combined transport to the site of budding. HIV-1 Psi thus acts as a subcellular localisation signal as well as a high-affinity-binding site for Gag.  相似文献   

15.
Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) infects CD4(+) T lymphocytes and monocytes/macrophages, incorporating host proteins in the process of assembly and budding. Analysis of the host cell proteins incorporated into virions can provide insights into viral biology. We characterized proteins in highly purified HIV-1 virions produced from human monocyte-derived macrophages (MDM), within which virus buds predominantly into intracytoplasmic vesicles, in contrast to the plasmalemmal budding of HIV-1 typically seen with infected T cells. Liquid chromatography-linked tandem mass spectrometry of highly purified virions identified many cellular proteins, including 33 previously described proteins in HIV-1 preparations from other cell types. Proteins involved in many different cellular structures and functions were present, including those from the cytoskeleton, adhesion, signaling, intracellular trafficking, chaperone, metabolic, ubiquitin/proteasomal, and immune response systems. We also identified annexins, annexin-binding proteins, Rab proteins, and other proteins involved in membrane organization, vesicular trafficking, and late endosomal function, as well as apolipoprotein E, which participates in cholesterol transport, immunoregulation, and modulation of cell growth and differentiation. Several tetraspanins, markers of the late endosomal compartment, were also identified. MDM-derived HIV contained 26 of 37 proteins previously found in exosomes, consistent with the idea that HIV uses the late endosome/multivesicular body pathway during virion budding from macrophages.  相似文献   

17.
Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.  相似文献   

18.
Marin M  Rose KM  Kozak SL  Kabat D 《Nature medicine》2003,9(11):1398-1403
The viral infectivity factor (Vif) encoded by HIV-1 neutralizes a potent antiviral pathway that occurs in human T lymphocytes and several leukemic T-cell lines termed nonpermissive, but not in other cells termed permissive. In the absence of Vif, this antiviral pathway efficiently inactivates HIV-1. It was recently reported that APOBEC3G (also known as CEM-15), a cytidine deaminase nucleic acid-editing enzyme, confers this antiviral phenotype on permissive cells. Here we describe evidence that Vif binds APOBEC3G and induces its rapid degradation, thus eliminating it from cells and preventing its incorporation into HIV-1 virions. Studies of Vif mutants imply that it contains two domains, one that binds APOBEC3G and another with a conserved SLQ(Y/F)LA motif that mediates APOBEC3G degradation by a proteasome-dependent pathway. These results provide promising approaches for drug discovery.  相似文献   

19.
During the viral life cycle, an HIV protein, Gag, assembles at the host membrane, specifically at lipid raft regions, at very high concentrations leading to viral particle budding. Gag is post-translationally modified with an N-terminal myristate group which is thought to target Gag to lipid rafts thus aiding in assembly. Here we have analyzed the membrane binding of myristoylated HIV-1 Gag and a non-myristoylated form of HIV-1 Gag to various membrane models. After assessing the extent of myristoylation by HPLC and radiometric assays, we compared membrane binding using fluorescence methods. We found that myristoylated Gag shows a greater than twofold increase in binding affinity to model rafts. A structural model to explain these results is presented.  相似文献   

20.
We have previously demonstrated by Gag polyprotein budding assays that the Gag p9 protein of equine infectious anemia virus (EIAV) utilizes a unique YPDL motif as a late assembly domain (L domain) to facilitate release of the budding virus particle from the host cell plasma membrane (B. A. Puffer, L. J. Parent, J. W. Wills, and R. C. Montelaro, J. Virol. 71:6541-6546, 1997). To characterize in more detail the role of the YPDL L domain in the EIAV life cycle, we have examined the replication properties of a series of EIAV proviral mutants in which the parental YPDL L domain was replaced by a human immunodeficiency virus type 1 (HIV-1) PTAP or Rous sarcoma virus (RSV) PPPY L domain in the p9 protein or by proviruses in which the parental YPDL or HIV-1 PTAP L domain was inserted in the viral matrix protein. The replication properties of these L-domain variants were examined with respect to Gag protein expression and processing, virus particle production, and virus infectivity. The data from these experiments indicate that (i) the YPDL L domain of p9 is required for replication competence (assembly and infectivity) in equine cell cultures, including the natural target equine macrophages; (ii) all of the functions of the YPDL L domain in the EIAV life cycle can be replaced by replacement of the parental YPDL sequence in p9 with the PTAP L-domain segment of HIV-1 p6 or the PPPY L domain of RSV p2b; and (iii) the assembly, but not infectivity, functions of the EIAV proviral YPDL substitution mutants can be partially rescued by inclusions of YPDL and PTAP L-domain sequences in the C-terminal region of the EIAV MA protein. Taken together, these data demonstrate that the EIAV YPDL L domain mediates distinct functions in viral budding and infectivity and that the HIV-1 PTAP and RSV PPPY L domains can effectively facilitate these dual replication functions in the context of the p9 protein. In light of the fact that YPDL, PTAP, and PPPY domains evidently have distinct characteristic binding specificities, these observations may indicate different portals into common cellular processes that mediate EIAV budding and infectivity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号