首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In conscious 2-6-day rat puppies, studies have been made on the bioelectrical activity in the visual and sensorimotor cortex. ECG in newborn rat puppies exhibits characteristic intermittence of complexes of the electrical activity with intervals of partial or almost complete absence of the activity in a minute scale. This phenomenon reflects the ancient property of immature nervous system, i.e. a capacity to autogenic periodic excitation. The structure of these complexes may be different, since it reflects the condition of animals at the given moment, the degree of maturation of elements involved in realization of the bioelectrical activity and interrelationship with other parts of the brain. With respect to amplitude-frequency parameters, age dynamics and the relationship to the spontaneous motor activity, four distinct types of complexes were revealed in the ECG of rat puppies during the first week of their postnatal life.  相似文献   

2.
Despite the highly convoluted nature of the human brain, neural field models typically treat the cortex as a planar two-dimensional sheet of ne;urons. Here, we present an approach for solving neural field equations on surfaces more akin to the cortical geometries typically obtained from neuroimaging data. Our approach involves solving the integral form of the partial integro-differential equation directly using collocation techniques alongside efficient numerical procedures for determining geodesic distances between neural units. To illustrate our methods, we study localised activity patterns in a two-dimensional neural field equation posed on a periodic square domain, the curved surface of a torus, and the cortical surface of a rat brain, the latter of which is constructed using neuroimaging data. Our results are twofold: Firstly, we find that collocation techniques are able to replicate solutions obtained using more standard Fourier based methods on a flat, periodic domain, independent of the underlying mesh. This result is particularly significant given the highly irregular nature of the type of meshes derived from modern neuroimaging data. And secondly, by deploying efficient numerical schemes to compute geodesics, our approach is not only capable of modelling macroscopic pattern formation on realistic cortical geometries, but can also be extended to include cortical architectures of more physiological relevance. Importantly, such an approach provides a means by which to investigate the influence of cortical geometry upon the nucleation and propagation of spatially localised neural activity and beyond. It thus promises to provide model-based insights into disorders like epilepsy, or spreading depression, as well as healthy cognitive processes like working memory or attention.  相似文献   

3.
The well-known Lotka-Volterra differential equations are modified in such way that the predators are supposed to be able to consume only a limited amount of preys in a unit of time. This saturation causes the appearance of nonperiodic solutions while the periodic ones are partly preserved. The paths in the phase plane which correspond to the nonperiodic solutions are expanding spirals of two different shapes. For a particular system of equations, all of the spirals either rotate for ever around the equilibrium point or straighten up at a certain point and head to infinity. The latter alternative occurs if the voracity of the predators is not too great. The biological significance of this result is in the possibility of a simultaneous progressive development of both populations.  相似文献   

4.
The activity of pyridoxal kinase was sharply increased in whole brain tissue of human, embryos and fetuses within 6-11 weeks of development. In brain stem the maximal values of the enzyme activity was observed at early stages of prenatal development of fetuses. The activity of pyridoxal kinase was increased in cerebral cortex and in the limbic system up to complete maturation of fetuses. It correlated with the fetus age within 14-40 weeks of development as calculated per 1 g of tissue wight or 1 mg of protein. The enzyme is distributed evenly in brain of newborns, babies and adult people. Its activity in grey cortex substance is higher, than in white one. There are 2-10-fold individual fluctuations of pyridoxal kinase activity in brain of people without CNS pathology. In newborns, having prolonged hypoxy at prenatal period, the enzyme activity was on the average by 70-80% lower at different brain parts than in newborns which had no primary asphyxia. A low pyridoxal kinase activity (not more than 1-5% as compared with its normal level) was observed in different brain parts of a child affected by focal gliosis and epilepsy.  相似文献   

5.
BRIDGES BETWEEN MICROTUBULES   总被引:6,自引:3,他引:3       下载免费PDF全文
Bridges between microtubules have been studied with the electron microscope in the axostyle of Saccinobaculus and in various tubule systems of chicken testis, including the helix of tubules surrounding the elongating spermatid nucleus and the flagellum of the sperm tail. In addition to the previously described periodic bridges, evidence is presented that nonperiodic bridges exist between certain tubules. An analysis of axial spacing between adjacent nonperiodic bridges suggests that these structures are attached to periodic binding sites on the microtubule wall, but that not all the binding sites are filled. The bridges appear nonperiodic as a result of random occupancy of some fraction of the periodic sites. The distribution of these binding sites is related to the substructure of the microtubule wall as seen with negative staining and optical diffraction.  相似文献   

6.
The origin of generalized absence epilepsy is still not known. In the last century, four theories have dominated the debate about the origin of the bilateral synchronous generalized spike-wave discharges associated with absence seizures: the "centrencephalic" theory [Penfield and Jasper], the "cortical" [Bancaud, Niedermeyer, Luders], the "cortico-reticular" theory [Gloor, Kostop[oulos, Avoli] and the "thalamic clock" theory [Buzsaki]. There is now some evidence that absence epilepsy, as studied in the WAG/Rij model, is a corticothalamic type of epilepsy. A new hypothesis is proposed which suggests that a cortical focus in the somatosensory cortex is driving the widespread corticothalamic networks during spontaneous absence seizures. This modern theory was given the name "hot spot' theory" [Meeren et al., 2002]. According to the present view three brain structures are critically involved and their integrity seems a minimal and sufficient condition for the occurrence of spike-wave discharges. Firstly, the reticular thalamic nucleus is involved and most likely its rostral pole. Secondly, the thalamocortical relay cells in the ventrobasal complex play a role and, thirdly and most importantly, the cerebral cortex with its epileptic zone. The zone in which the epileptic focus seems to be localised is located on the somato-sensory cortex, and more precisely in the area on which the peri-oral region including the upper lip, projects.  相似文献   

7.
Density profiles of protein patterns from cortical tissue exhibit an increase in only one peak when mice are rendered epileptic by application of cobalt to the cortex. The increase and diminution in peak height, attributed to a change in the concentration of a single protein (protein 3), coincides with the severity of seizure activity; with the degree of abnormality of the cortex region affected; and with the time of onset, duration, and disappearance of the epileptic condition. Thus, the concentration of protein 3 is highest in tissue from the site of cobalt application (up to 10× normal), is increased less in the focus (up to 5× normal), while in the mirror focus (contralateral, not exposed surgically), the increase in the concentration of protein 3 is still detectable, but not as pronounced. The concentrations in these cortex regions decrease to normal in reverse order to their elevation when the epileptic signs begin to diminish. Furthermore, the increase of protein 3 in all three areas is proportional to the severity of epilepsy. The concentration of protein 3 also becomes enhanced when the cortex is injured, but no progressive increase in the concentration occurs with time, nor does the concentration reach that observed in the site of cobalt application or the focal region. These mice do not exhibit spontaneous seizures, but injection of pentelynetetrazol confirms that animals with brain injury only are more susceptible to seizures. The results of this study suggest that both the area of cortex affected and the intensity of metabolic alterations may be precipitating factors in establishing an epileptic condition. This view is in agreement with clinical observations on epilepsy.This work is in partial fulfillment of M.Sc. requirements.  相似文献   

8.
Song M  Du H  Wu N  Hou B  Wu G  Wang J  Feng H  Jiang T 《PloS one》2011,6(2):e17294
Generalized tonic-clonic seizures (GTCS) are characterized by unresponsiveness and convulsions, which cause complete loss of consciousness. Many recent studies have found that the ictal alterations in brain activity of the GTCS epilepsy patients are focally involved in some brain regions, including thalamus, upper brainstem, medial prefrontal cortex, posterior midbrain regions, and lateral parietal cortex. Notably, many of these affected brain regions are the same and overlap considerably with the components of the so-called default mode network (DMN). Here, we hypothesize that the brain activity of the DMN of the GTCS epilepsy patients are different from normal controls, even in the resting state. To test this hypothesis, we compared the DMN of the GTCS epilepsy patients and the controls using the resting state functional magnetic resonance imaging. Thirteen brain areas in the DMN were extracted, and a complete undirected weighted graph was used to model the DMN for each participant. When directly comparing the edges of the graph, we found significant decreased functional connectivities within the DMN of the GTCS epilepsy patients comparing to the controls. As for the nodes of the graph, we found that the degree of some brain areas within the DMN was significantly reduced in the GTCS epilepsy patients, including the anterior medial prefrontal cortex, the bilateral superior frontal cortex, and the posterior cingulate cortex. Then we investigated into possible mechanisms of how GTCS epilepsy could cause the reduction of the functional integrations of DMN. We suggested the damaged functional integrations of the DMN in the GTCS epilepsy patients even during the resting state, which could help to understand the neural correlations of the impaired consciousness of GTCS epilepsy patients.  相似文献   

9.
哺乳动物进化过程中,大脑皮层逐渐增大增厚和脑容量增大,从而构成了脑神经环路复杂性的细胞生物学基础.皮层出现皱褶是非人类灵长类演化的重要特征.成体人脑大约由近860多亿个神经细胞组成,其中,在人脑神经发生高峰,每小时有近400多万个兴奋性神经细胞产生.如此高速的神经生成过程需要精确的细胞与分子调控机制.本文主要讨论调控大脑皮层增大增厚的细胞与分子机制和相关的脑发育疾病.  相似文献   

10.
Structural changes in different parts of the brain in rheumatoid arthritis (RA) patients have been reported. RA is not regarded as a brain disease. Body organs such as spleen and lung produce RA-relevant genes. We hypothesized that the structural changes in the brain are caused by changes of gene expression in body organs. Changes in different parts of the brain may be affected by altered gene expressions in different body organs. This study explored whether an association between gene expressions of an organ or a body part varies in different brain structures. By examining the association of the 10 most altered genes from a mouse model of spontaneous arthritis in a normal mouse population, we found two groups of gene expression patterns between five brain structures and spleen. The correlation patterns between the prefrontal cortex, nucleus accumbens, and spleen were similar, while the associations between the other three parts of the brain and spleen showed a different pattern. Among overall patterns of the associations between body organs and brain structures, spleen and lung had a similar pattern, and patterns for kidney and liver were similar. Analysis of the five additional known arthritis-relevant genes produced similar results. Analysis of 10 nonrelevant-arthritis genes did not result in a strong association of gene expression or clearly segregated patterns. Our data suggest that abnormal gene expressions in different diseased body organs may influence structural changes in different brain parts.  相似文献   

11.
The process by which two people share attention towards the same object or event is called joint attention. Joint attention and the underlying triadic representations between self, other person and object are thought to be unique to humans, supporting teaching, cooperation and language learning. Despite the progress that has been made in understanding the behavioural importance of joint attention during early social development, almost nothing is known about the brain substrate that supports joint attention in the developing infant. We examined responses in five-month-old infants'' prefrontal cortex during triadic social interactions using near-infrared spectroscopy. The results demonstrate that, even by the age of five months, infants are sensitive to triadic interactions and, like adults, they recruit a specific brain region localized in left dorsal prefrontal cortex when engaged in joint attention with another person. This suggests that the human infant is neurobiologically prepared for sharing attention with other humans, which may provide the basis for a wide variety of uniquely human social and cultural learning processes.  相似文献   

12.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

13.
Epilepsy, one of the most common conditions affecting the brain, is characterized by neuroplasticity and brain cell energy defects. In this work, we demonstrate the ability of the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) to counteract epileptiform phenomena in inbred DBA/2J mice, an animal model displaying genetic background with an high susceptibility to induced- and spontaneous seizures. Via modulation of the Rho GTPases, CNF1 regulates actin dynamics with a consequent increase in spine density and length in pyramidal neurons of rat visual cortex, and influences the mitochondrial homeostasis with remarkable changes in the mitochondrial network architecture. In addition, CNF1 improves cognitive performances and increases ATP brain content in mouse models of Rett syndrome and Alzheimer''s disease. The results herein reported show that a single dose of CNF1 induces a remarkable amelioration of the seizure phenotype, with a significant augmentation in neuroplasticity markers and in cortex mitochondrial ATP content. This latter effect is accompanied by a decrease in the expression of mitochondrial fission proteins, suggesting a role of mitochondrial dynamics in the CNF1-induced beneficial effects on this epileptiform phenotype. Our results strongly support the crucial role of brain energy homeostasis in the pathogenesis of certain neurological diseases, and suggest that CNF1 could represent a putative new therapeutic tool for epilepsy.  相似文献   

14.
Neuroactive Amino Acids in Focally Epileptic Human Brain: A Review   总被引:3,自引:0,他引:3  
Studies of neuroactive amino acids and their regulatory enzymes in surgically excised focally epileptic human brain are reviewed. Concentrations of glutamate, aspartate and glycine are significantly increased in epileptogenic cerebral cortex. The activities of the enzymes, glutamate dehydrogenase and aspartate aminotransferase, involved in glutamate and aspartate metabolism are also increased. Polyamine synthesis is enhanced in epileptogenic cortex and may contribute to the activation of N-methyl-D-aspartate (NMDA) receptors. Nuclear magnetic resonance spectroscopy (NMRS) reveals that patients with poorly controlled complex partial seizures have a significant diminution in occipital lobe gamma aminobutyric acid (GABA) concentration. The activity of the enzyme GABA-aminotransaminase (GABA-T) which catalyzes GABA degredation is not altered in epileptogenic cortex. NMRS studies show that vigabatrin, a GABA-T inhibitor and effective antiepileptic, significantly increases brain GABA. Glutamate decarboxylase (GAD), responsible for GABA synthesis, is diminished in interneurons in discrete regions of epileptogenic cortex and hippocampus. In vivo microdialysis performed in epilepsy surgery patients provides measurements of extracellular amino acid levels during spontaneous seizures. Glutamate concentrations are higher in epileptic hippocampi and increase before seizure onset reaching potentially excitotoxic levels. Frontal or temporal cortical epileptogenic foci also release aspartate, glutamate and serine particularly during intense seizures or status epilepticus. GABA in contrast, exhibits a delayed and feeble rise in the epileptic hippocampus possibly due to a reduction in the number and/or efficiency of GABA transporters.  相似文献   

15.
Mutation in Plaur gene encoding urokinase-type plasminogen activator receptor (uPAR) results in epilepsy and autistic phenotype in mice. In humans, a single nucleotide polymorphism in PLAUR gene represents a risk for autism spectrum disorders. Importantly, the expression of uPAR is elevated in the brain after various epileptogenic insults like traumatic brain injury and status epilepticus. So far, the consequences of altered uPAR expression on brain networks are poorly known. We tested a hypothesis that uPAR regulates post-injury neuronal reorganization and consequent functional outcome, particularly epileptogenesis. Epileptogenesis was induced by intrahippocampal injection of kainate in adult male wild type (Wt) or uPAR knockout (uPAR?/?) mice, and animals were monitored with continuous (24/7) video-electroencephalogram for 30 days. The severity of status epilepticus did not differ between the genotypes. The spontaneous electrographic seizures which developed were, however, longer and their behavioral manifestations were more severe in uPAR?/? than Wt mice. The more severe epilepsy phenotype in uPAR?/? mice was associated with delayed but augmented inflammatory response and more severe neurodegeneration in the hippocampus. Also, the distribution of newly born cells in the dentate gyrus was more scattered, and the recovery of hippocampal blood vessel length from status epilepticus-induced damage was compromised in uPAR?/? mice as compared to Wt mice. Our data demonstrate that a deficiency in uPAR represents a mechanisms which results in the development of a more severe epilepsy phenotype and progressive brain pathology after status epilepticus. We suggest that uPAR represents a rational target for disease-modifying treatments after epileptogenic brain insults.  相似文献   

16.
Epilepsy is a common group of neurological diseases. Acquired epilepsy can be caused by brain insults, such as trauma, infection or tumour, and followed by a latent period from several months to years before the emergence of recurrent spontaneous seizures. More than 50 % of epilepsy cases will develop chronic neurodegenerative, neurocognitive and neuropsychiatric comorbidities. It is important to understand the mechanisms by which a brain insult results in acquired epilepsy and comorbidities in order to identify targets for novel therapeutic interventions that may mitigate these outcomes. Recent studies have implicated the hyperphosphorylated tubulin-associated protein (tau) in rodent models of epilepsy and Alzheimer's disease, and in experimental and clinical studies of traumatic brain injury. This potentially represents a novel target to mitigate epilepsy and associated neurocognitive and psychiatric disorders post-brain injury. This article reviews the potential role of tau-based mechanisms in the pathophysiology of acquired epilepsy and its neurocognitive and neuropsychiatric comorbidities, and the potential to target these for novel disease-modifying treatments.  相似文献   

17.
内感受是机体对自身生理状态的感觉.近年来,越来越多的研究证据表明,内感受可以调控成瘾行为,岛叶是其发挥作用的重要神经基础之一.目前,对岛叶作用机制的研究正受到高度重视.本文从岛叶的基本结构和功能出发,结合近几年来岛叶调控成瘾行为、行为抑制以及情感决策的重要发现,讨论岛叶在成瘾发生及发展过程中的可能作用及其机制,并根据已有的实验证据,试图提出较为合理的研究展望,以推动相关神经环路和神经化学机制研究的深入.  相似文献   

18.
Small-World Networks (SWNs) represent a fundamental model for the comprehension of many complex man-made and biological networks. In the central nervous system, SWN models have been shown to fit well both anatomical and functional maps at the macroscopic level. However, the functional microscopic level, where the nodes of a network are represented by single neurons, is still poorly understood. At this level, although recent evidences suggest that functional connection graphs exhibit small-world organization, it is not known whether and how these maps, potentially distributed in multiple brain regions, change across different conditions, such as spontaneous and stimulus-evoked activities. We addressed these questions by analyzing the data from simultaneous multi-array extracellular recordings in three brain regions of rats, diversely involved in somatosensory information processing: the ventropostero-lateral thalamic nuclei, the primary somatosensory cortex and the centro-median thalamic nuclei. From both spike and Local Field Potential (LFP) recordings, we estimated the functional connection graphs by using the Normalized Compression Similarity for spikes and the Phase Synchrony for LFPs. Then, by using graph-theoretical statistics, we characterized the functional topology both during spontaneous activity and sensory stimulation. Our main results show that: (i) spikes and LFPs show SWN organization during spontaneous activity; (ii) after stimulation onset, while substantial functional graph reconfigurations occur both in spike and LFPs, small-worldness is nonetheless preserved; (iii) the stimulus triggers a significant increase of inter-area LFP connections without modifying the topology of intra-area functional connections. Finally, investigating computationally the functional substrate that supports the observed phenomena, we found that (iv) the fundamental concept of cell assemblies, transient groups of activating neurons, can be described by small-world networks. Our results suggest that activity of neurons from multiple areas of the rat somatosensory system contributes to the integration of local computations arisen in distributed functional cell assemblies according to the principles of SWNs.  相似文献   

19.
Abstract

Spontaneously occurring spike-wave discharges (SWD) in rats are used as a model for absence epilepsy in humans. In vitro, the binding parameters of 3H-Ro 5–4864, a ligand labelling the peripheral benzodiazepine receptor, were determined for brain membranes of WAG/Rij rats, an inbred strain showing SWD, and for ACI rats, an inbred strain showing no SWD. No difference in the Kd but a small difference in the Bmax values between the strains were found. Recently, other investigators reported a correlation between a decrease in affinity for 3H-Ro 5–4864 and the occurrence of SWD. Our results suggest however that it is doubtful that a change in Kd of the peripheral benzodiazepine receptor is causal in the etio-pathology of the spontaneous absence like phenomena in rats.  相似文献   

20.
Homology as a relation of correspondence between parts of individuals   总被引:4,自引:0,他引:4  
The recognition of correspondences has long been a fundamental activity among systematists. Advocates ofNaturphilosophie, such as Lorenz Oken, drew far-fetched analogies between taxonomic groups and all sorts of other things, including the Persons of the Trinity. They treated change through time either as analogous to an ontogeny or as the product of divinely instituted laws of nature. Darwin changed things by making the taxonomic units strictly historical, implying that they are not classes but rather individuals in a broad metaphysical sense. That means that taxa are concrete, particular things, or wholes made up of parts which are themselves individuals, and that there are no laws of nature for them. Homology is a relationship of correspondence between parts of organisms that are also parts of populations and lineages. It is not a relationship of similarity, and unlike similarity it is transitive. Analogy is a relationship of correspondence between parts of organisms that are members of classes, and is not necessarily due to function. Taxa, like other individuals, can change indefinitely, and the only thing that they must share is a common ancestor. They do not share an essence, Platonic Idea orBauplan, although “conservative characters” may be widespread in them. Iterative homology likewise is a relationship of correspondence, but the nature of that correspondence remains unclear. The difficulties of the homology concept can be overcome by treating phylogenetics and comparative biology in general as historical narrative. From the 46th “Phylogenetisches Symposium”, Jena, Germany, November 20–21, 2004. Theme of the symposium: “Evolutionary developmental biology—new challenges to the homology concept”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号