首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ovarian tumors often exhibit chromosome instability and hypersensitivity to the chemotherapeutic agent cisplatin. Recently, we have shown that this cellular phenotype may result from an acquired disruption of the Fanconi Anemia/BRCA (FA/BRCA) signaling pathway. Disruption results from methylation and silencing of one of the FA genes (FANCF), leading to cisplatin sensitivity. Restoration of this pathway is associated with demethylation of FANCF, leading to acquired cisplatinum resistance. The serial inactivation and reactivation of the FA/BRCA pathway has important implications for the diagnosis and treatment of ovarian cancers and related cancers.  相似文献   

2.
Garner E  Smogorzewska A 《FEBS letters》2011,585(18):2853-2860
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.  相似文献   

3.
4.
5.
Cellular resistance of cisplatin is related to variousfactors such as membrane transformations, changes incellular transport systems, andan increased efflux of cisplatin by the tumor cells. Deficiencies of one ormoretrace metals can affect normal physiological functions, leading to altered enzymaticactivities and areduction in immune responses. This in vitro investigation was undertaken tostudy and determine the differ-entialcytotoxicity of certain trace metals in humanovarian cancer cells that were sensitive and resistant tocisplatin. Standardcytotoxicity assays were performed using the neutral red assay. In general, thecisplatin-resistantcells exhibited an increased resistance to the externally supplied trace metals. For bothcell linesthe rank order of cytotoxicity from greatest to least with the non-essentialmetals was Cd >Bi , and forthe macrometals, Ca >K + >Mg . The transition metals and selenium exhibited a slight difference betweenthe two celllines with respect to the order of cytotoxicity. The cisplatin-sensitive cells had a rankorder ofV >Se >Cu >Zn >Fe , from greatest to least toxicity. The cisplatin-resistant cells had a rank orderof Cu >V >Se >Zn >Fe . Since trace metals have various functions in maintaining normal health,these results provide key baselinecytotoxicity data and show that, in general, cytotoxic resistance to thetrace metals testedfollowed a pattern similar to cellular cisplatin resistance.  相似文献   

6.
A.F. Alpi  K.J. Patel 《DNA Repair》2009,8(4):430-435
The hereditary genetic disorder Fanconi anemia (FA) belongs to the heterogeneous group of diseases associated with defective DNA damage repair. Recently, several reviews have discussed the FA pathway and its molecular players in the context of genome maintenance and tumor suppression mechanisms [H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia, Nat. Rev. Genet. 2 (2001) 446–457; W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735–748; L.J. Niedernhofer, A.S. Lalai, J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair, Cell 123 (2005) 1191–1198; K.J. Patel, Fanconi anemia and breast cancer susceptibility, Nat. Genet. 39 (2007) 142–143]. This review assesses the influence of post-translational modification by ubiquitin. We review and extract the key features of the enzymatic cascade required for the monoubiquitylation of the FANCD2/FANCI complex and attempt to include recent findings into a coherent mechanism. As this part of the FA pathway is still far from fully understood, we raise several points that must be addressed in future studies.  相似文献   

7.
Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.  相似文献   

8.
Human ovarian cancer cells COC1 and COC1/DDP (cisplatin-resistant subline) were exposed to 6 kV/cm nanosecond electric pulses (nsEP) with a pulse length of 8, 16 or 24 ns. The potential in a subcellular unit was calculated using a multilayer dielectric spherical model, and area under the voltage–time curves (AUC) integrated with a lower limit of 0.2 V. Cell viability was determined, and double-stand and total DNA breaks detected with the neutral and alkaline comet assays. nsEP evoked a higher voltage and AUC in nucleoplasm, and the levels in COC1 cells was just above those in COC1/DDP cells. Comets only appeared in the alkaline assay demonstrating single-stand DNA break. Fewer DNA break (16.51% vs. 35.13% at 24 ns, p = 0.0150) and more survival (22.42% vs. 13.19% at 24 ns, p = 0.0015) occurred in COC1/DDP cells despite an equal electric energy and almost equal cell sizes. 24-ns EP led to higher rates of cell-death and comet. The comet rate correlated with cell-death fraction in either cell line (r = 0.5701, p = 0.0135; r = 0.5110, p = 0.0302). There was no a correlation between the tail length, tail moment or Olive tail moment and cell-death rate. The data showed that response of chemosensitive cells differed from that of chemoresistant cells and DNA damage contributed to percent of cell death.  相似文献   

9.
Acquired resistance to cisplatin (cDDP) is a multifactorial process that represents one of the main problems in ovarian cancer therapy. Distamycin A is a minor groove DNA binder whose toxicity has limited its use and prompted the synthesis of derivatives such as NAX001 and NAX002, which have a carbamoyl moiety and different numbers of pyrrolamidine groups. Their interaction with a B-DNA model and with an extended-TATA box model, [Polyd(AT)], was investigated using isothermal titration calorimetry (ITC) to better understand their mechanism of interaction with DNA and therefore better explain their cellular effects. Distamycin A interactions with Dickerson and Poly[d(AT)(6)] oligonucleotides show a different thermodynamic with respect to NAX002. The bulkier distamycin A analogue shows a non optimal binding to DNA due to its additional pyrrolamidine group. Cellular assays performed on cDDP-sensitive and -resistant cells showed that these compounds, distamycin A in particular, affect the expression of folate cycle enzymes even at cellular level. The optimal interaction of distamycin A with DNA may account for the down-regulation of both dihydrofolate reductase (DHFR) and thymidylate synthase (TS) and the up-regulation of spermidine/spermine N1-acetyltransferase (SSAT) caused by this compound. These effects seem differently modulated by the cDDP-resistance phenotype. NAX002 which presents a lower affinity to DNA and slightly affected these enzymes, showed a synergic inhibition profile in combination with cDDP. In addition, their combination with cDDP or polyamine analogues increased cell sensitivity to the drugs suggesting that these interactions may have potential for development in the treatment of ovarian carcinoma.  相似文献   

10.
Ovarian tumors often exhibit chromosome instability and hypersensitivity to the chemotherapeutic agent cisplatin. Recently, we have shown that this cellular phenotype may result from an acquired disruption of the Fanconi Anemia/BRCA (FA/BRCA) signaling pathway. Disruption results from methylation and silencing of one of the FA genes (FANCF), leading to cisplatin sensitivity. Restoration of this pathway is associated with demethylation of FANCF, leading to acquired cisplatinum resistance. The serial inactivation and reactivation of the FA/BRCA pathway has important implications for the diagnosis and treatment of ovarian cancers and related cancers.  相似文献   

11.
Protein quantification in a complex protein mixture presents a daunting task in biochemical analysis. Antibody-based immunoassays are traditional methods for protein quantification. However, there are issues associated with accuracy and specificity in these assays, especially when the changes are small (e.g., <2-fold). With recent developments in mass spectrometry, monitoring a selected peptide, thus protein, in a complex biological sample has become possible. In this study, we demonstrate a simple mass spectrometry-based method for selective measurement of a moderately low abundant protein, superoxide dismutase 1 (SOD1), in cisplatin-sensitive and cisplatin-resistant human ovarian cancer cells. Selected-reaction-monitoring (SRM) technology was employed to specifically analyze the target peptides in a pair of human ovarian cancer cell lines: 2008/2008-C13*5.25 (cisplatin-sensitive/cisplatin-resistant, respectively). The observed 1.47-fold higher expression in the resistant cell line is consistent with findings by other approaches. This robust liquid chromatography/mass spectrometry (LC/MS) method provides a powerful tool for targeted proteomic verification and/or validation studies.  相似文献   

12.
13.
Bladder carcinomas frequently show extensive deletions of chromosomes 9p and/or 9q, potentially including the loci of the Fanconi anemia (FA) genes FANCC and FANCG. FA is a rare recessive disease due to defects in anyone of 13 FANC genes manifesting with genetic instability and increased risk of neoplasia. FA cells are hypersensitive towards DNA crosslinking agents such as mitomycin C and cisplatin that are commonly employed in the chemotherapy of bladder cancers. These observations suggest the possibility of disruption of the FA/BRCA DNA repair pathway in bladder tumors. However, mutations in FANCC or FANCG could not be detected in any of 23 bladder carcinoma cell lines and ten surgical tumor specimens by LOH analysis or by FANCD2 immunoblotting assessing proficiency of the pathway. Only a single cell line, BFTC909, proved defective for FANCD2 monoubiquitination and was highly sensitive towards mitomycin C. This increased sensitivity was restored specifically by transfer of the FANCF gene. Sequencing of FANCF in BFTC909 failed to identify mutations, but methylation of cytosine residues in the FANCF promoter region was demonstrated by methylation-specific PCR, HpaII restriction and bisulfite DNA sequencing. Methylation-specific PCR uncovered only a single instance of FANCF promoter hypermethylation in surgical specimens of further 41 bladder carcinomas. These low proportions suggest that in contrast to other types of tumors silencing of FANCF is a rare event in bladder cancer and that an intact FA/BRCA pathway might be advantageous for tumor progression.  相似文献   

14.
15.
The granulosa cell produces an inhibitor of aromatase activity, which recently was purified to homogeneity (follicle-regulatory protein: FRP). Since extracts of testicular homogenates also contain factor(s) with biological properties similar to FRP, including inhibition of granulosa cell aromatase, we examined the effects of ovarian FRP on testicular function. Forty-five-day-old rats received daily FRP injections (100 micrograms or 300 micrograms). After 15, 30, 45, and 70 days of therapy, (n = 5 each group), trunk serum was measured for testosterone, androstenedione, estradiol, and FSH levels by established radioimmunoassays (RIA). One testis from each rat was homogenized, centrifuged, and evaluated for sperm head counts; the other testis was dissected by transillumination, and the length of seminiferous epithelial stages determined. After 15 (control: 4.8 +/- 0.2 mm; 100 micrograms: 6.0 +/- 0.3 mm; 300 micrograms: 6.6 +/- 0.3 mm) and 30 days (control: 4.6 +/- 0.2 mm; 100 micrograms: 6.3 +/- 0.2 mm; 300 micrograms: 5.9 +/- 0.2 mm) of treatment the length of the "strong" seminiferous tubule segment in FRP-treated rats was greater than in control rats (p less than 0.05). Serum levels of steroids and FSH were similar in all groups. After 30, 45, and 70 days of treatment, the sperm head counts for the 100-micrograms and 300-micrograms dosages were 26%, 29%, 30% and 20%, 34%, and 24% of control values, respectively. By 70 days of treatment, cycle Stage VII was markedly reduced or absent in FRP-treated rats, and their round spermatids contained ring chromatin; both conditions indicate degeneration. FRP (50 micrograms/ml) was added to rat Sertoli cell cultures for 4 days after which transferrin and androgen-binding protein (ABP) were measured. FRP enhanced Sertoli cell secretion of ABP (58 vs. 138 +/- 7 microliters eq/culture) and transferrin (2.1 vs. 4.7 +/- 0.6 microgram/culture). In conclusion, systemic injection of FRP alters seminiferous epithelial function by reducing maturation of mature sperm forms. Adding FRP to Sertoli cells in culture enhances secretion of transferrin and ABP; this suggests that maturation of the germinal elements may be linked to the secretory function of seminiferous tubules.  相似文献   

16.
The Fanconi anemia pathway and the DNA interstrand cross-links repair   总被引:4,自引:0,他引:4  
Rosselli F  Briot D  Pichierri P 《Biochimie》2003,85(11):1175-1184
Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair.  相似文献   

17.
The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway   总被引:1,自引:0,他引:1  
Protein ubiquitination and deubiquitination are dynamic processes implicated in the regulation of numerous cellular pathways. Monoubiquitination of the Fanconi anemia (FA) protein FANCD2 appears to be critical in the repair of DNA damage because many of the proteins that are mutated in FA are required for FANCD2 ubiquitination. By screening a gene family RNAi library, we identify the deubiquitinating enzyme USP1 as a novel component of the Fanconi anemia pathway. Inhibition of USP1 leads to hyperaccumulation of monoubiquitinated FANCD2. Furthermore, USP1 physically associates with FANCD2, and the proteins colocalize in chromatin after DNA damage. Finally, analysis of crosslinker-induced chromosomal aberrations in USP1 knockdown cells suggests a role in DNA repair. We propose that USP1 deubiquitinates FANCD2 when cells exit S phase or recommence cycling after a DNA damage insult and may play a critical role in the FA pathway by recycling FANCD2.  相似文献   

18.
FANCI is a second monoubiquitinated member of the Fanconi anemia pathway   总被引:1,自引:0,他引:1  
Activation of the Fanconi anemia (FA) DNA damage-response pathway results in the monoubiquitination of FANCD2, which is regulated by the nuclear FA core ubiquitin ligase complex. A FANCD2 protein sequence-based homology search facilitated the discovery of FANCI, a second monoubiquitinated component of the FA pathway. Biallelic mutations in the gene coding for this protein were found in cells from four FA patients, including an FA-I reference cell line.  相似文献   

19.
Letterio JJ 《Mutation research》2005,576(1-2):120-131
There is considerable complexity underlying the mechanisms through which the TGF-beta signaling pathway regulates the initiation and progression of cancer. Analysis of this pathway and the role that it plays in human malignancy continues to elucidate novel mechanisms through which various genetic and epigenetic events subvert the controls that TGF-beta exerts over cell growth, differentiation, and malignant transformation. Modeling these events in the mouse represents an important goal, as the relevant preclinical models are essential not only for improving our understanding of the role of the TGF-beta pathway in the molecular pathogenesis of cancer, but also as tools for evaluating the impact of novel therapeutics on TGF-beta signaling and the role they may play in the prevention and treatment of malignancies. Here, we consider highlights from a number of in vivo murine model systems and relate a few of the significant observations to what we know about TGF-beta signaling in human cancer.  相似文献   

20.
Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway   总被引:17,自引:0,他引:17  
Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号