首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ChlD mutants of Escherichia coli are pleiotropic, lacking formate-nitrate reductase activity as well as formate-hydrogenlyase activity. Whole-chain formate-nitrate reductase activity, assayed with formate as the electron donor and measuring the amount of nitrite produced, was restored to wild-type levels in the mutants by addition of 10(-4)m molybdate to the growth medium. Under these conditions, the activity of each of the components of the membrane-bound nitrate reductase chain increased after molybdate supplementation. In the absence of nitrate, the activities of the formate-hydrogenlyase system were also restored by molybdate. Strains deleted for the chlD gene responded in a similar way to molybdate supplementation. The concentration of molybdenum in the chlD mutant cells did not differ significantly from that in the wild-type cells at either low or high concentrations of molybdate in the medium. However, the distribution of molybdenum between the soluble protein and membrane fractions differed significantly from wild type. We conclude that the chlD gene product cannot be a structural component of the formate-hydrogenlyase pathway or the formate-nitrate reductase pathway, but that it must have an indirect role in processing molybdate to a form necessary for both electron transport systems.  相似文献   

2.
chlD gene function in molybdate activation of nitrate reductase.   总被引:24,自引:19,他引:5       下载免费PDF全文
chlD mutants of Escherichia coli lack active nitrate reductase but form normal levels of this enzyme when the medium is supplemented with 10-3 M molybdate. When chlD mutants were grown in unsupplemented medium and then incubated with molybdate in the presence of chloramphenicol, they formed about 5% the normal level of nitrate reductase. Some chlD mutants or the wild type grown in medium supplemented with tungstate accumulated an inactive protein which was electrophoretically identical to active nitrate reductase. Addition of molybdate to those cells in the presence of chloramphenicol resulted in the formation of fully induced levels of nitrate reductase. Two chlD mutants, including a deletion mutant, failed to accumulate the inactive protein and to form active enzyme under the same conditions. Insertion of 99-Mo into the enzyme protein paralleled activation; 185-W could not be demonstrated to be associated with the accumulated inactive protein. The rates of activation of nitrate reductase at varying molybdate concentrations indicated that the chlD gene product facilitates the activation of nitrate reductase at concentrations of molybdate found in normal growth media. At high concentrations, molybdate circumvented this function in chlD mutants and appeared to activate nitrate reductase by a mass action process. We conclude that the chlD gene plays two distinguishable roles in the formation of nitrate reductase in E. coli. It is involved in the accumulation of fully induced levels of the nitrate reductase protein in the cell membrane and it facilitates the insertion of molybdenum to form the active enzyme.  相似文献   

3.
Experiments were performed to determine whether defects in molybdenum cofactor metabolism were responsible for the pleiotropic loss of the molybdoenzymes nitrate reductase and formate dehydrogenase in chl mutants of Escherichia coli. In wild-type E. coli, molybdenum cofactor activity was present in both the soluble and membrane-associated fractions when the cells were grown either aerobically or anaerobically, with and without nitrate. Molybdenum cofactor in the soluble fraction decreased when the membrane-bound nitrate reductase and formate dehydrogenase were induced. In the chl mutants, molybdenum cofactor activity was found in the soluble fraction of chlA, chlB, chlC, chlD, chlE, and chlG, but only chlB, chlC, chlD, and chlG expressed cofactor activity in the membrane fraction. The defect in the chlA mutants which prevented incorporation of the soluble cofactor into the membrane also caused the soluble cofactor to be defective in its ability to bind molybdenum. This cofactor was not active in the absence of molybdate, and it required at least threefold more molybdate than did the wild type in the Neurospora crassa nit-1 complementation assay. However, the cofactor from the chlA strain mediated the dimerization of the nit-1 subunits in the presence and absence of molybdate to yield the 7.9S dimer. Growth of chlA mutants in medium with increased molybdate did not repair the defect in the chlA cofactor nor restore the molybdoenzyme activities. Thus, molybdenum cofactor was synthesized in all the chl mutants, but additional processing steps may be missing in chlA and chlE mutants for proper insertion of cofactor in the membrane.  相似文献   

4.
For the study of molybdenum uptake by Escherichia coli, we generated Tn5lac transposition mutants, which were screened for the pleiotropic loss of molybdoenzyme activities. Three mutants A1, A4, and M22 were finally selected for further analysis. Even in the presence of 100 microM molybdate in the growth medium, no active nitrate reductase, formate dehydrogenase, and trimethylamine-N-oxide reductase were detected in these mutants, indicating that the intracellular supply of molybdenum was not sufficient. This was also supported by the observation that introduction of plasmid pWK225 carrying the complete nif regulon of Klebsiella pneumoniae did not lead to a functional expression of nitrogenase. Finally, molybdenum determination by induced coupled plasma mass spectroscopy confirmed a significant reduction of cell-bound molybdenum in the mutants compared with that in wild-type E. coli, even at high molybdate concentrations in the medium. A genomic library established with the plasmid mini-F-derived cop(ts) vector pJE258 allowed the isolation of cosmid pBK229 complementing the molybdate uptake deficiency of the chlD mutant and the Tn5lac-induced mutants. Certain subfragments of pBK229 which do not contain the chlD gene are still able to complement the Tn5lac mutants. Mapping experiments showed that the Tn5lac insertions did not occur within the chromosomal region present in pBK229 but did occur very close to that region. We assume that the Tn5lac insertions have a polar effect, thus preventing the expression of transport genes, or that a positively acting regulatory element was inactivated.  相似文献   

5.
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system.  相似文献   

6.
The chlD gene in Escherichia coli is required for the incorporation and utilization of molybdenum when the cells are grown with low concentrations of molybdate. We constructed chlD-lac operon fusions and measured expression of the fusion, Mo cofactor, and nitrate reductase activities under a variety of growth conditions. The chlD-lac fusion was highly expressed when cells were grown with less than 10 nm molybdate. Increasing concentrations of molybdate caused loss of activity, with less than 5% of the activity remaining at 500 nM molybdate; when tungstate replaced molybdate, it had an identical affect on chlD expression. Expression of chlD-lac was increased in cells grown with nitrate. Strains with chlD-lac plus an additional mutation in a chl or nar gene were constructed to test whether the regulation of chlD-lac required the concerted action of gene products involved with Mo cofactor or nitrate reductase synthesis. Mutations in narL prevented the increase in activity in response to nitrate; mutations in chlB, narC, or narI resulted in partial constitutive expression of the chlD-lac fusion: the fusion was regulated by molybdate, but it no longer required the presence of nitrate for maximal activity. Mutations in chlA, chlE, or chlG which affect Mo cofactor metabolism, did not affect the expression of chlD-lac.  相似文献   

7.
We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate.  相似文献   

8.
In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector.  相似文献   

9.
Competition experiments between wild-type Azotobacter vinelandii and a mutant lacking Mo-independent nitrogenase 3 indicate that nitrogenase 3 provides an advantage during diazotrophic growth on agar media containing 100 to 500 nM Na2MoO4 but not in liquid media under the same conditions. Expression of nitrogenase 3 in wild-type cells growing on agar surfaces was verified with an anfH-lacZ fusion and by detection of nitrogenase 3 subunits. These results show that nitrogenase 3 is important for diazotrophic growth on agar medium at molybdenum concentrations that are not limiting for Mo-dependent diazotrophic growth in liquid medium.  相似文献   

10.
Mycobacterium vaccae 10 growing in methanol medium synthesizes two inducible alternative NAD(+)-dependent formate dehydrogenases (FDH). In the presence of molybdenum, the dominating form of the enzyme is FDHI with Mr 440 kDa and Km 0.32 mM for sodium formate. FDHI reduced ferricyanide as well as NAD+, and it was reversibly inactivated by formate. NAD+ stabilized FDHI against this inactivation. Under conditions of artificial molybdenum deficiency (tungsten in the medium), the second enzyme (FDHII) appeared with Mr about 93 kDa and Km 8.3 mM for sodium formate, and no FDHI activity was detected. FDHII did not reduce ferricyanide and was not inactivated by formate. The activity of FDHI was restored in tungsten-grown cells by pulse addition of molybdenum under conditions of blocked protein synthesis, suggesting the pre-existence of inactive apo-FDHI.  相似文献   

11.
Heterocyst glycolipid synthase (HglT) catalyzes the final step of heterocyst glycolipid (Hgl) biosynthesis, in which a glucose is transferred to the aglycone (fatty alcohol). Here we describe the isolation of hglT null mutants. These mutants lacked Hgls under nitrogen-starved conditions and instead accumulated fatty alcohols. Differentiated heterocyst cells in the mutants were morphologically indistinguishable from those of the wild-type cells. Interestingly, the mutants grew under nitrogen starvation but fixed nitrogen with lower nitrogenase activity than did the wild-type. The mutants had a pale green phenotype with a decreased chlorophyll content, especially under nitrogen-starved conditions. These results suggest that the glucose moiety of the Hgls may be necessary for optimal protection against oxygen influx but is not essential and that aglycones can function as barriers against oxygen influx in the heterocyst cells.  相似文献   

12.
Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)相似文献   

13.
A beta-phosphoglucomutase (beta-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of beta-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h(-1), while the deletion of beta-PGM resulted in a maximum specific growth rate of 0.05 h(-1) on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as beta-glucose 1-phosphate in the medium. Furthermore, the beta-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of alpha-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the beta-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded beta-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

14.
Mutants of Staphylococcus staphylolyticus incapable of producing an extracellular staphylolytic glycylglycine endopeptidase were isolated and found to have cells in the population susceptible to lysis by this enzyme, as did the wild-type organism under conditions in which the endopeptidase was not produced. These results suggest that cultures of this organism normally contain a heterogeneous population of cells with regard to cell wall composition and susceptibility to the enzyme. Production of the endopeptidase appears to act as a selective pressure which removes the susceptible cells in the population as the enzyme appears in the medium. A comparison of the peptidoglycan of the wild-type organism grown under conditions in which the endopeptidase was produced with that of this organism grown under nonproducing conditions and with those of endopeptidase-less mutants showed that in the presence of the endopeptidase the cell population had peptidoglycan with shorter peptide cross bridges and a greater percentage of serine in these cross bridges than was found in cells grown in the absence of the enzyme. The inability of the endopeptidase to hydrolyze glycylserine and serylglycine peptide bonds suggests that at least part of the resistance this organism has to the endopeptidase is due to relative amounts of serine found in the peptide cross bridges of some cells in the population.  相似文献   

15.
Mutant strains of Bradyrhizobium japonicum that required higher levels of molybdate than the wild-type strain for growth on NO(3)-containing medium were obtained after transposon Tn5 mutagenesis of the wild-type strain. The mutant strains expressed more than fivefold-greater nitrate reductase activities in the range of 0.1 to 1.0 mM added molybdate compared with activities expressed upon incubation in non-Mo-supplemented medium, whereas the nitrate reductase activity of the wild-type strain (JH) was not markedly influenced by Mo supplementation. In free-living culture, mutant strains JH310 and JH359 expressed substantial nitrogenase activity, even in medium treated to remove molybdate, and nitrogenase activity was influenced little by Mo supplementation, whereas the wild-type strain required 100 nM added Mo for highest nitrogenase activity. Double-reciprocal plots of Mo uptake rates versus Mo concentration showed that both bacteroids and free-living cells of mutant strain JH359 had about the same affinity for Mo as did the parent strain. Bacteroids of both the mutants and the wild type also exhibited similar Mo accumulation rates over a 9-min period under very-low-Mo (4 nM) conditions. Nitrogenase activities for strain JH359 and for the wild-type strain in free-living culture were both strongly inhibited by tungsten; thus, the nitrogenase activities of both strains are probably the result of a "conventional" Mo-containing nitrogenase. Soybeans inoculated with strain JH359 and grown under either Mo-supplemented or Mo-deficient conditions had greater specific acetylene reduction rates and significantly greater plant fresh weight than those inoculated with the wild-type strain. Under Mo-deficient conditions, the acetylene reduction rates and plant fresh weights were up to 35 and 58% greater, respectively, for mutant-nodulated plants compared with wild-type-strain-nodulated plants.  相似文献   

16.
Nitrogenase activities were determined from maximum acetylene reduction rates for mutant strains of Azotobacter vinelandii which are unable to fix N2 in the presence of molybdenum (Nif-) but undergo phenotypic reversal to Nif+ under conditions of Mo deficiency. The system responsible for N2 fixation under these conditions is thought to be an alternative N2 fixation system (Bishop et al., Proc. Natl. Acad. Sci. U.S.A. 77:7342-7346, 1980). Phenotypic reversal of Nif- strains to Nif+ strains was also observed in N-free medium without Mo but with either V or Re. Two protein patterns were found on two-dimensional gels of proteins from the extracts of wild-type cells cultured in N-free medium without Mo and with or without V or Re. The expression of each protein pattern in the wild-type strain of A. vinelandii seemed to depend upon the physiological state of the N2-fixing culture. Electron paramagnetic resonance experiments were conducted on whole cells of A. vinelandii grown under conditions of Mo deprivation in the absence of fixed N. No g = 3.65 signal (an electron paramagnetic resonance signal characteristic of the Mo-containing component of nitrogenase) was detectable in these cells, regardless of whether V or Re was present during growth of these cells, These results are discussed from the perspective that the well-known effect of V on N2 fixation by A. vinelandii may involve an alternative N2 fixation system.  相似文献   

17.
Hairy roots were used as an in vitro culture system for the propagation of wild-type and transgenic plant viruses. Tobacco mosaic virus (TMV) was added to the liquid culture medium at the same time as root inoculation. Hairy root growth was unaffected by viral infection. Maximum concentrations of TMV in Nicotiana benthamiana hairy roots were 1-2 orders of magnitude greater than in suspended N. benthamiana cells and reached levels of 1-2 mg g(-1) dry weight or 20-28% total soluble protein. Virus accumulated in the roots initially with a constant doubling time of about 1.0 day; subsequent reductions in viral growth rate were correlated with a significant decline in infectivity relative to the inoculum virus. The morphological integrity of the viral particles was maintained during propagation in hairy roots. The contribution to the overall viral titer of passive association of virus with the biomass, for example, by surface adsorption, was negligible compared with active viral replication. N. benthamiana hairy roots were also infected with a TMV-based viral vector developed to express green fluorescent protein (GFP). This vector was about 260-fold less infectious than wild-type TMV and accumulated much more slowly in the roots. Maximum levels of TMV-GFP in the biomass were about 65-fold lower than for TMV. This work demonstrates that hairy root cultures are a feasible means for in vitro propagation of wild-type and transgenic plant viruses under conditions that allow a high degree of environmental containment and control.  相似文献   

18.
Bacteria respond to changes in medium osmolarity by varying the concentrations of specific solutes in order to maintain constant turgor pressure. The cytoplasmic pools of K+, proline, glutamate, alanine, and glycine of Lactobacillus plantarum ATCC 14917 increased when the osmolarity of the growth media was raised from 0.20 to 1.51 osmol/kg by KCL. When glycine-betaine was present in a high-osmolarity chemically defined medium, it was accumulated to a high cytoplasmic concentration, while the concentrations of most other osmotically important solutes decreased. These observations, together with the effects of glycine-betaine on the specific growth rate under high-osmolarity conditions, suggest that glycine-betaine is preferentially accumulated in L. plantarum. Uptake of glycine-betaine, proline, glutamate, and alanine was studied in cells that were alternately exposed to hyper- and hypo-osmotic stresses. The rate of uptake of proline and glycine-betaine increased instantaneously upon increasing the osmolarity, whereas that of other amino acids did not. This activation occurred also under conditions in which protein synthesis was inhibited was most pronounced when cells were pregrown at high osmolarity. The duration of net transport was a function of the osmotic strength of the assay medium. Glutamate uptake was not activated by an osmotic upshock, and the uptake of alanine was low under all conditions tested. When cells were subjected to osmotic downshock, a rapid efflux of accumulated glycine-betaine, proline, and alanine occurred whereas the pools of other amin acids remained unaffected. The results indicate that osmolyte efflux is, at least to some extent, mediated via specific osmotically regulated efflux systems and not via nonspecific mechanisms as has been suggested previously.  相似文献   

19.
Cell-free extracts of Proteus mirabilis were able to reconstitute NADPH-dependent assimilatory nitrate reductase in crude extracts of the Neurospora crassa mutant strain nit-1, lacking molybdenum cofactor. Molybdenum cofactor was formed in the cytoplasm of the bacterium even in the presence of oxygen during growth though under these conditions no molybdo enzymes are formed. As a consequence no cofactor could be released by acid treatment from membranes of cells grown aerobically. The amount of cofactor released from membranes of cells grown anaerobically under various conditions was proportional to the amount of molybdo enzymes formed. During growth in the presence of tungstate a cofactor, which lacks molybdenum, was found in the cytoplasm. For detection of this so-called demolybdo cofactor the presence of molybdate during reconstitution was essential. Moreover, the cytoplasmic cofactor pool in cells grown in the presence of tungstate appeared to be two to three times higher than in cells grown under similar conditions without tungstate. After anaerobic growth in the presence of tungstate, the inactive demolybdo reductases were shown to contain partly no cofactor and partly a demolybdo cofactor. The P. mirabilis chlorate resistant mutant S 556 did not contain molybdenum cofactor. In two other chl-mutants the cofactor activity was the same as in the wild type.  相似文献   

20.
The pyruvate metabolism of a Lactococcus lactis subsp. lactis biovar diacetylactis mutant deficient in alpha-acetolactate decarboxylase and its wild-type strain was studied during batch cultivations. A chemically defined medium was used containing glucose as carbon- and energy-source. The alpha-acetolactate decarboxylase deficiency had no effect on the specific growth rate. Addition of citrate was found to increase the specific growth rate of both strains under aerobic and anaerobic conditions. The product formation was monitored throughout the cultivations. The carbon- and redox-balances were within the accuracy of the experimental data. When citrate was added, alpha-acetolactate, diacetyl, and acetoin were formed, and aeration was shown to have a positive effect on the formation of these metabolites. By omitting lipoic acid (required for a functional pyruvate dehydrogenase complex) from the growth medium, a similar stimulatory effect on alpha-acetolactate, diacetyl, and acetoin formation was observed under aerobic conditions. The strain with impaired alpha-acetolactate decarboxylase activity accumulated alpha-acetolactate which resulted in an increased diacetyl formation compared to the wild-type strain, under aerobic and anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号