首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J E Mahaney  D D Thomas 《Biochemistry》1991,30(29):7171-7180
We have performed electron paramagnetic resonance (EPR) experiments on nitroxide spin labels incorporated into rabbit skeletal sarcoplasmic reticulum (SR), in order to investigate the physical and functional interactions between melittin, a small basic membrane-binding peptide, and the Ca-ATPase of SR. Melittin binding to SR substantially inhibits Ca(2+)-dependent ATPase activity at 25 degrees C, with half-maximal inhibition at 9 mol of melittin bound per mole of Ca-ATPase. Saturation transfer EPR (ST-EPR) of maleimide spin-labeled Ca-ATPase showed that melittin decreases the submillisecond rotational mobility of the enzyme, with a 4-fold increase in the effective rotational correlation time (tau r) at a melittin/Ca-ATPase mole ratio of 10:1. This decreased rotational motion is consistent with melittin-induced aggregation of the Ca-ATPase. Conventional EPR was used to measure the submicrosecond rotational dynamics of spin-labeled stearic acid probes incorporated into SR. Melittin binding to SR at a melittin/Ca-ATPase mole ratio of 10:1 decreases lipid hydrocarbon chain mobility (fluidity) 25% near the surface of the membrane, but only 5% near the center of the bilayer. This gradient effect of melittin on SR fluidity suggests that melittin interacts primarily with the membrane surface. For all of these melittin effects (on enzymatic activity, protein mobility, and fluidity), increasing the ionic strength lessened the effect of melittin but did not alleviate it entirely. This is consistent with a melittin-SR interaction characterized by both hydrophobic and electrostatic forces. Since the effect of melittin on lipid fluidity alone is too small to account for the large inhibition of Ca-ATPase rotational mobility and enzymatic activity, we propose that melittin inhibits the ATPase primarily through its capacity to aggregate the enzyme, consistent with previous observations of decreased Ca-ATPase activity under conditions that decrease protein rotational mobility.  相似文献   

2.
We have investigated the relationship between function and molecular dynamics of both the lipid and the Ca-ATPase protein in sarcoplasmic reticulum (SR), using temperature as a means of altering both activity and rotational dynamics. Conventional and saturation-transfer electron paramagnetic resonance (EPR) was used to probe rotational motions of spin-labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase sulfhydryl groups in SR. EPR studies were also performed on aqueous dispersions of extracted SR lipids, in order to study intrinsic lipid properties independent of the protein. While an Arrhenius plot of the Ca-ATPase activity exhibits a clear change in slope at 20 degrees C, Arrhenius plots of lipid hydrocarbon chain mobility are linear, indicating that an abrupt thermotropic change in the lipid hydrocarbon phase is not responsible for the Arrhenius break in enzymatic activity. The presence of protein was found to decrease the average hydrocarbon chain mobility, but linear Arrhenius plots were observed both in the intact SR and in extracted lipids. Lipid EPR spectra were analyzed by procedures that prevent the production of artifactual breaks in the Arrhenius plots. Similarly, using sample preparations and spectral analysis methods that minimize the temperature-dependent contribution of local probe mobility to the spectra of spin-labeled Ca-ATPase, we find that Arrhenius plots of overall protein rotational mobility also exhibit no change in slope. The activation energy for protein mobility is the same as that of ATPase activity above 20 degrees C; we discuss the possibility that overall protein mobility may be essential to the rate-limiting step above 20 degrees C.  相似文献   

3.
We have used spin labels and electron paramagnetic resonance (EPR) to study the correlation between the rotational dynamics of protein and lipid in sarcoplasmic reticulum (SR) membranes. A short-chain maleimide spin label was used to monitor the submillisecond rotational mobility of the Ca-ATPase enzyme (using saturation transfer EPR); a free fatty acid spin label was used to monitor the submicrosecond rotational mobility of the bulk lipid hydrocarbon chains (using conventional EPR); and a fatty acid spin label derivative (long-chain maleimide) attached to the enzyme was used to monitor the mobility of hydrocarbon chains adjacent to the protein (i.e., boundary lipid). In the native SR membranes, the protein was highly mobile (effective correlation time 50 microseconds). The spectra of the hydrocarbon probes both contained at least two components. For the unattached probe, the major component indicated nearly as much mobility as in the absence of protein (effective rotational correlation time 3 ns), while a minor component, corresponding to 25-30% of the total signal, indicated strong immobilization (effective correlation time greater than or equal to 10 ns). For the attached hydrocarbon probe, the major component (approximately 70% of the total) was strongly immobilized, and the mobile component was less mobile than that of the unattached probe. When the lipid-to-protein ratio was reduced 55% by treatment with deoxycholate, protein mobility decreased considerably, suggesting protein aggregation. A concomitant increase was observed in the fraction of immobilized spin labels for both the free and attached hydrocarbon probes. The observed hydrocarbon immobilization probably arises in part from immobilization at the protein-lipid boundary, but protein-protein interactions that trap hydrocarbon chains may also contribute. When protein aggregation was induced by glutaraldehyde crosslinking, submillisecond protein mobility was eliminated, but there was no effect on either hydrocarbon probe. Thus protein aggregation does not necessarily cause hydrocarbon chain immobilization.  相似文献   

4.
S M Lewis  D D Thomas 《Biochemistry》1991,30(34):8331-8339
We have measured the microsecond rotational motions of the sarcoplasmic reticulum (SR) Ca-ATPase as a function of enzyme-specific ligands, including those that induce active calcium transport. We labeled the Ca-ATPase with a maleimide spin probe and detected rotational dynamics using saturation-transfer electron paramagnetic resonance (ST-EPR). This probe's ST-EPR spectra have been shown to be sensitive to microsecond protein rotational motion, corresponding to large-scale protein rotations that should be affected by changes in the enzyme's shape, flexibility, protein-protein interactions (oligomeric state), and protein-lipid interactions. We found that the motions of the enzyme-nucleotide and the enzyme-nucleotide/Ca states are indistinguishable from the motions in the absence of ligands. Rotational mobility does decrease in response to the addition of DMSO, a solvent that inhibits Ca-ATPase activity and stabilizes the phosphoenzyme. However, the addition of phosphate to form phosphoenzyme, in the presence or absence of DMSO, does not change the motions significantly. During the steady state of active calcium transport, the microsecond rotational mobility is indistinguishable from that of the resting enzyme. In order to detect any transient changes in mobility that might not be detectable in the steady state and to improve the precision of steady-state measurements, we photolyzed caged ATP with a laser pulse in the presence of calcium and detected the ST-EPR response from the spin-labeled enzyme, with a time resolution of 1 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have developed a saturation transfer EPR (ST-EPR) method to measure selectively the rotational dynamics of those lipids that are motionally restricted by integral membrane proteins and have applied this methodology to measure lipid-protein interactions in native sarcoplasmic reticulum (SR) membranes. This analysis involves the measurement of spectral saturation using a series of six stearic acid spin labels that are labeled with a nitroxide at different carbon atom positions. A large amount of spectral saturation is observed for spin labels in native SR membranes, but not for spin labels in dispersions of extracted SR lipids, implying that the motional properties of those lipids interacting with the Ca-ATPase, i.e., the boundary or annular lipid, can be directly measured without the need for spectral subtraction procedures. A comparison of the motional properties of the restricted lipid, measured by ST-EPR, with those measured by digital subtraction of conventional EPR spectra qualitatively agree, for in both cases the Ca-ATPase restricts the rotational mobility of a population of lipids, whose rotational mobility increases as the nitroxide is positioned toward the center of the bilayer. However, the ability of ST-EPR to directly measure the motionally restricted lipid in a model-independent means provides the greater precision necessary to measure small changes in the rotational dynamics of the lipid at the protein-lipid interface, providing a valuable tool in clarifying the relationship between the physical nature of the protein-lipid interface and membrane function.  相似文献   

6.
We have varied the degree of protein-protein interactions among Ca-ATPase polypeptide chains in sarcoplasmic reticulum using the cleavable homobifunctional cross-linker dithiobissuccinimidyl propionate and have measured both the rotational mobility and calcium-dependent ATPase activity of the Ca-ATPase in order to assess 1) the nature of the microsecond rotational motion measured by saturation transfer EPR (ST-EPR) of the spin-labeled Ca-ATPase and 2) the functional significance of this rotational motion. The Ca-ATPase was labeled specifically and covalently with a maleimide spin label, with full preservation of enzymatic activity. ST-EPR experiments show that cross-linking increases the enzyme's effective rotational correlation time (tau r), thus decreasing its rotational mobility (tau r-1). As the degree of cross-linking is varied, tau r is proportional to the mean molecular weight of the cross-linked aggregate, as predicted by theory, adding to the evidence that ST-EPR measures the overall rotational mobility of the Ca-ATPase with respect to the membrane normal. Furthermore, enzymatic activity correlates with overall protein rotational mobility, suggesting that this motion is functionally important. The second-order inactivation profile resulting from the use of either cross-linking or chemical modification with fluorescein isothiocyanate as modes of inactivation indicates that protein-protein interactions are critical to the reaction mechanism. However, the pattern of cross-linking observed on polyacrylamide gels demonstrates that cross-linking occurs in a random manner, indicating that no specific and stable oligomeric complexes exist. In order to rationalize both the functional need for protein mobility and the evidence that protein-protein interactions are critical and random, we propose that the enzymatic cycle of the Ca-ATPase involves the making and breaking of functionally important protein-protein interactions.  相似文献   

7.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

8.
The rotational motion of an ouabain spin label with sheep kidney Na,K-ATPase has been measured by electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) measurements. Spin-labelled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 ± 0.1 mol of bound ouabain spin label per ATPase β dimer. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (> 99%) of a broad resonance which is characteristic of a strongly immobilized spin label. ST-EPR measurements of the spin labelled ATPase preparations yield effective correlation times for the bound labels of 209 ± 11 μs at 0°C and 44 ± 4 μs at 20°C. These rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements with glutaraldehyde-crosslinked preparations indicated that the observed rotational correlation times predominantly represented the motion of entire Na,K-ATPase-containing membrane fragments, rather than the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The strong immobilization of the ouabain spin label will make it an effective paramagnetic probe of the extracellular surface of the Na,K-ATPase for a variety of NMR and EPR investigations.  相似文献   

9.
We have investigated the role of lipid and protein dynamics in the activation of the Ca2+-dependent ATPase in sarcoplasmic reticulum (SR) by diethyl ether. Conventional and saturation-transfer electron paramagnetic resonance (EPR) were used to probe rotational motions of spin labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase in SR. We confirm previous studies (Salama, G., and Scarpa, A. (1980) J. Biol. Chem. 255, 6525-6528; Salama, G., and Scarpa, A. (1983) Biochem. Pharmacol. 32, 3465-3477; Kidd, A., Scales, D., and Inesi, G. (1981) Biochem. Biophys. Acta 65, 124-131) reporting that addition of diethyl ether to SR results in an approximately 2-fold enzymatic activation, without loss of coupling. Diethyl ether progressively fluidizes the SR membrane with respect to lipid hydrocarbon chain dynamics probed at several depths in the bilayer. Digital substractions, used to analyze two-component lipid spin label spectra, reveal that a 2-fold mobilization occurs in the population of lipid probes motionally restricted by the protein, while the remaining more mobile population is less affected. The microwave saturation properties of lipid probes also indicate that restricted motions of these probes are mobilized in maximally activated SR membranes. Saturation-transfer EPR, applied to maleimide spin-labeled Ca-ATPase, demonstrates that a 2-fold increase in microsecond rotational motion of the Ca-ATPase correlates with the maximal enzymatic activation. Effects of diethyl ether on both the enzymatic activity and molecular dynamics are completely reversible by dilution with buffer. We propose that ether activates by selectively mobilizing lipid chains adjacent to the enzyme, thus facilitating protein motions that are essential for calcium transport.  相似文献   

10.
J E Mahaney  C M Grisham 《Biochemistry》1992,31(7):2025-2034
The interaction of a nitroxide spin-labeled derivative of ouabain with sheep kidney Na,K-ATPase and the motional behavior of the ouabain spin label-Na,K-ATPase complex have been studied by means of electron paramagnetic resonance (EPR) and saturation-transfer EPR (ST-EPR). Spin-labeled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 +/- 0.1 mol of bound ouabain spin label per mole of ATP-dependent phosphorylation sites, even after repeated centrifugation and resuspension of the purified ATPase-containing membrane fragments. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (greater than 99%) of a broad resonance at 0 degrees C, characteristic of a tightly bound spin label which is strongly immobilized by the protein backbone. Saturation-transfer EPR measurements of the spin-labeled ATPase preparations yield effective correlation times for the bound labels significantly longer than 100 microseconds at 0 degrees C. Since the conventional EPR measurements of the ouabain spin-labeled Na,K-ATPase indicated the label was strongly immobilized, these rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements of ouabain spin-labeled Na,K-ATPase (a) cross-linked with glutaraldehyde and (b) crystallized in two-dimensional arrays indicated that the observed rotational correlation times predominantly represented the motion of large Na,K-ATPase-containing membrane fragments, as opposed to the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The results suggest that the binding of spin-labeled ouabain to the ATPase induces the protein to form large aggregates, implying that cardiac glycoside induced enzyme aggregation may play a role in the mechanism of action of the cardiac glycosides in inhibiting the Na,K-ATPase.  相似文献   

11.
To investigate the physical mechanism by which melittin inhibits Ca-adenosine triphosphatase (ATPase) activity in sarcoplasmic reticulum (SR) membranes, we have used electron paramagnetic resonance spectroscopy to probe the effect of melittin on lipid-protein interactions in SR. Previous studies have shown that melittin substantially restricts the rotational mobility of the Ca-ATPase but only slightly decreases the average lipid hydrocarbon chain fluidity in SR. Therefore, in the present study, we ask whether melittin has a preferential effect on Ca-ATPase boundary lipids, i.e., the annular shell of motionally restricted lipid that surrounds the protein. Paramagnetic derivatives of stearic acid and phosphatidylcholine, spin-labeled at C-14, were incorporated into SR membranes. The electronic paramagnetic resonance spectra of these probes contained two components, corresponding to motionally restricted and motionally fluid lipids, that were analyzed by spectral subtraction. The addition of increasing amounts of melittin, to the level of 10 mol melittin/mol Ca-ATPase, progressively increased the fraction of restricted lipids and increased the hyperfine splitting of both components in the composite spectra, indicating that melittin decreases the hydrocarbon chain rotational mobility for both the fluid and restricted populations of lipids. No further effects were observed above a level of 10 mol melittin/mol Ca-ATPase. In the spectra from control and melittin-containing samples, the fraction of restricted lipids decreased significantly with increasing temperature. The effect of melittin was similar to that of decreased temperature, i.e., each spectrum obtained in the presence of melittin (10:1) was nearly identical to the spectrum obtained without melittin at a temperature approximately 5 degrees C lower. The results suggest that the principal effect of melittin on SR membranes is to induce protein aggregation and this in turn, augmented by direct binding of melittin to the lipid, is responsible for the observed decreases in lipid mobility. Protein aggregation is concluded to be the main cause of inactivation of the Ca-ATPase by melittin, with possible modulation also by the decrease in mobility of the boundary layer lipids.  相似文献   

12.
We have developed a quantitative and relatively model-independent measure of lipid fluidity using EPR and have applied this method to compare the temperature dependence of lipid hydrocarbon chain fluidity, overall protein rotational mobility, and the calcium-dependent enzymatic activity of the Ca-ATPase in sarcoplasmic reticulum. We define membrane lipid fluidity to be T/eta, where eta is the viscosity of a long chain hydrocarbon reference solvent in which a fatty acid spin label gives the same EPR spectrum (quantitated by the order parameter S) as observed for the same probe in the membrane. This measure is independent of the reference solvent used as long as the spectral line shapes in the membrane and the solvent match precisely, indicating that the same type of anisotropic probe motion occurs in the two systems. We argue that this empirical measurement of fluidity, defined in analogy to the macroscopic fluidity (T/eta) of a bulk solvent, should be more directly related to protein rotational mobility (and thus to protein function) than are more conventional measures of fluidity, such as the rate or amplitude of rotational motion of the lipid hydrocarbon chains themselves. This new definition thus offers a fluidity measure that is more directly relevant to the protein's behavior. The direct relationship between this measure of membrane fluidity and protein rotational mobility is supported by measurements in sarcoplasmic reticulum. The overall rotational motion of the spin-labeled Ca-ATPase protein was measured by saturation-transfer EPR. The Arrhenius activation energy for protein rotational mobility (11-12 kcal/mol/degree) agrees well with the activation energy for lipid fluidity, if defined as in this study, but not if more conventional definitions of lipid fluidity are used. This agreement, which extends over the entire temperature range from 0 to 40 degrees C, suggests that protein mobility depends directly on lipid fluidity in this system, as predicted from hydrodynamic theory. The same activation energy is observed for the calcium-dependent ATPase activity under physiological conditions, suggesting that protein rotational mobility (dependent on lipid fluidity) is involved in the rate-limiting step of active calcium transport.  相似文献   

13.
14.
The profile structure of functional sarcoplasmic reticulum (SR) membranes was investigated by X-ray diffraction methods to a resolution of 10 A. The lamellar diffraction data from hydrated oriented multilayers of SR vesicles showed monotonically increasing widths for higher order lamellar reflections, indicative of simple lattice disorder within the multilayer. A generalized Patterson function analysis, previously developed for treating lamellar diffraction from lattice-disordered multilayers, was used to identify the autocorrelation function of the unit cell electron density profile. Subsequent deconvolution of this autocorrelation function provided the most probable unit cell electron density profile of the SR vesicle membrane pair. The resulting single membrane profile possesses marked asymmetry, suggesting that a major portion of the Ca++ -ATPase resides on the exterior of the vesicle. The electron density profile also suggests that the Ca++-dependent ATPase penetrates into the lipid hydrocarbon core of the SR membrane. Under conditions suitable for X-ray analysis, SR vesicles prepared as partially dehydrated oriented multilayers are shown to conserve most of their ATP-induced Ca++ uptake functionality, as monitored spectrophotometrically with the Ca++ indicator arsenazo III. This has been verified both in resuspensions of SR after centrifugation and slow partial dehydration, and directly in SR multilayers in a partially dehydrated state (20-30 percent water). Therefore, the profile structure of the SR membrane that we have determined may closely resemble that found in vivo.  相似文献   

15.
We investigated the effect of the local anesthetic procaine on the activity of the calcium pump protein of sarcoplasmic reticulum (SR) vesicles. Procaine slowed down the rate of calcium uptake by SR vesicles without enhancing the vesicles' passive permeability. This slowing of the unidirectional pumping rate was reflected by the inhibition of the maximal rate of the transport-coupled Ca(2+)-ATPase activity. The inhibition was dependent on Mg2+ concentration; at optimal (i.e. low) concentrations of magnesium, half-maximal inhibition occurred with procaine concentrations close to 15-20 mM. Inhibition of ATPase was not mediated by a change in the properties of the bulk lipid phase. Procaine moderately reduced the true affinity of ATPase for ATP, whereas equilibrium binding of calcium to ATPase in the absence of ATP was virtually not modified by procaine. In fast-kinetics studies, we explored the various intermediate steps in the ATPase catalytic cycle, in order to determine which of them were targets for inhibition by procaine. We found that procaine slowed down ATPase dephosphorylation, an effect which is at least partly responsible for the observed inhibition of overall ATPase activity. In contrast, procaine accelerated the calcium-induced transconformation of unphosphorylated ATPase in the absence of ATP, and altered neither the rate of the Ca(2+)-dependent phosphorylation of ATPase, nor the rate of the dissociation of Ca2+ from phosphorylated ATPase towards the SR lumen, a critical step, the rate of which was measured by a novel fast-filtration method. These results are discussed with respect to the possible site(s) of binding of this amphiphile on the ATPase, and in relation to the contribution of individual steps in the catalytic cycle to the rate limitation of unperturbed SR ATPase activity.  相似文献   

16.
To determine the intermolecular cross-linking site on the primary structure sarcoplasmic reticulum (SR) Ca-ATPase, the conditions for the specific binding of 14C-labeled 1,4-phenylene bis maleimide (PBM) or 14C-labeled N-ethylmaleimide (NEM) to the ATPase were explored. SR vesicles were preincubated with nonradioactive PBM in the presence of 1 mM vanadate for 1 h, then washed by centrifugation to remove free PBM and vanadate. When the pretreated SR vesicles were allowed to react with 1 mM [14C]PBM in the presence of 1 mM AMPPNP, the amount of [14C]PBM incorporated into the ATPase increased with time in parallel with the formation of dimeric ATPase and reached the maximum labeling density of 1 mol of [14C]PBM per mol of dimeric ATPase at 40 min after the start of the reaction. When the pretreated SR vesicles were allowed to react with 2 mM [14C]NEM in the absence of AMPPNP, a maximum of about 2 mol of NEM was bound per mol of the ATPase monomer. The labeling density of [14C]NEM decreased from 2 to 1 mol per mol of the ATPase when the SR vesicles were allowed to react with [14C]NEM in the presence of AMPPNP. From the analysis of the amino acid composition of the two major [14C]NEM-labeled peptides isolated from the thermolytic digest of the enzyme after the reaction of SR with [14C]NEM in the absence of AMPPNP, we deduced that [14C]NEM was incorporated into Cys377 and Cys614. On the other hand, the labeling of SR in the presence of AMPPNP resulted in inhibition of the [14C]NEM binding to Cys614, leaving Cys377 unaltered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In order to investigate the roles of the physical states of phospholipid and protein in the enzymatic behavior of the Ca2+ -ATPase from sarcoplasmic reticulum, we have modified the lipid phase of the enzyme, observed the effects on the enzymatic activity at low temperatures, and correlated these effects with spectroscopic measurements of the rotational motions of both the lipid and protein components. Replacement of the native lipids with dipalmitoyl phosphatidylcholine inhibits ATPase activity and decreases both lipid fluidity, as monitored by EPR spectroscopy on a stearic acid spin label, and protein rotational mobility, as monitored by saturation transfer EPR spectroscopy on the covalently spin-labeled enzyme. Solubilization of the lipid-replaced enzyme with Triton X-100 reverses all three of these effects. Ten millimolar CaCl2 added either to the enzyme associated with the endogenous lipids or to the Triton X-100 soulbilized enzyme inhibits both ATPase activity and protein rotational mobility but has no detectable effect on the lipid mobility. These results are consistent with the proposal that both lipid fluidity and protein rotational mobility are essential for enzymatic activity.  相似文献   

18.
The purpose of this study is to better define the relationship of the 53 kDa glycoprotein (GP-53) of the sarcoplasmic reticulum (SR) to other SR proteins. Towards that end the effects of antibodies against GP-53 on the rotational dynamics of maleimide spin-labeled proteins of SR of rabbit skeletal muscle were investigated. The labeling protocol used in this study provided 1.6 +/- 0.3 moles spin label incorporated per 10(5) g SR protein. Labeling specificity studies indicated that nearly 70% of the label bound specifically to the Ca(2+)-ATPase, with the remainder bound to GP-53. Using saturation-transfer electron paramagnetic resonance (ST-EPR), it was determined that the rotational mobility (i.e., the rate of rotation) of the spin-labeled SR proteins decreased greater than 5-fold upon preincubation of MSL-SR with an antiserum against the GP-53, while preincubation of MSL-SR with preimmune serum had no effect. Preincubation of MSL-SR with a monoclonal antibody against the GP-53 produced a 4-fold decrease in the rotational mobility of the MSL-SR proteins compared to control measurements. Further, these effects showed a marked calcium dependence: the decrease in the rotational mobility of the MSL-SR proteins preincubated with anti-GP-53 antibodies in 500 microM Ca2+ was 3-6-fold greater than that of MSL-SR preincubated with antibodies in 5 mM EGTA. While MSL was bound to both Ca(2+)-ATPase and GP-53, model calculations indicated that the decreases observed in the rotational mobility of the MSL-SR proteins caused by the anti-GP-53 monoclonal antibodies were too large to be accounted for by effects on GP-53 alone. The calculations suggest that the rotational rate of Ca(2+)-ATPase was also diminished by anti-GP-53 monoclonal antibodies, indicating an interaction between GP-53 and Ca(2+)-ATPase in the SR membrane.  相似文献   

19.
Heavy metal ions have been shown to induce Ca2+ release from skeletal sarcoplasmic reticulum (SR) by binding to free sulfhydryl groups on a Ca2+ channel protein and are now examined in cardiac SR. Ag+ and Hg2+ (at 10-25 microM) induced Ca2+ release from isolated canine cardiac SR vesicles whereas Ni2+, Cd2+, and Cu2+ had no effect at up to 200 microM. Ag(+)-induced Ca2+ release was measured in the presence of modulators of SR Ca2+ release was compared to Ca2(+)-induced Ca2+ release and was found to have the following characteristics. (i) Ag(+)-induced Ca2+ release was dependent on free [Mg2+], such that rates of efflux from actively loaded SR vesicles increased by 40% in 0.2 to 1.0 mM Mg2+ and decreased by 50% from 1.0 to 10.0 mM Mg2+. (ii) Ruthenium red (2-20 microM) and tetracaine (0.2-1.0 mM), known inhibitors of SR Ca2+ release, inhibited Ag(+)-induced Ca2+ release. (iii) Adenine nucleotides such as cAMP (0.25-2.0 mM) enhanced Ca2(+)-induced Ca2+ release, and stimulated Ag(+)-induced Ca2+ release. (iv) Low Ag+ to SR protein ratios (5-50 nmol Ag+/mg protein) stimulated Ca2(+)-dependent ATPase activity in Triton X-100-uncoupled SR vesicles. (v) At higher ratios of Ag+ to SR proteins (50-250 nmol Ag+/mg protein), the rate of Ca2+ efflux declined and Ca2(+)-dependent ATPase activity decreased gradually, up to a maximum of 50% inhibition. (vi) Ag+ stimulated Ca2+ efflux from passively loaded SR vesicles (i.e., in the absence of ATP and functional Ca2+ pumps), indicating a site of action distinct from the SR Ca2+ pump. Thus, at low Ag+ to SR protein ratios, Ag+ is very selective for the Ca2+ release channel. At higher ratios, this selectivity declines as Ag+ also inhibits the activity of Ca2+,Mg2(+)-ATPase pumps. Ag+ most likely binds to one or more sulfhydryl sites "on" or "adjacent" to the physiological Ca2+ release channel in cardiac SR to induce Ca2+ release.  相似文献   

20.
J Voss  W Birmachu  D M Hussey  D D Thomas 《Biochemistry》1991,30(30):7498-7506
We have studied the effect of melittin, a basic membrane-binding peptide, on Ca-ATPase activity and on protein and lipid dynamics in skeletal sarcoplasmic reticulum (SR), using time-resolved phosphorescence and fluorescence spectroscopy. Melittin completely inhibits Ca-ATPase activity, with half-maximal inhibition at 9 +/- 1 mol of melittin bound to the membrane per mole of ATPase (0.1 mol of melittin per mole of lipid). The time-resolved phosphorescence anisotropy (TPA) decay of the Ca-ATPase labeled with erythrosin isothiocyanate (ERITC) shows that melittin restricts microsecond protein rotational motion. At 25 degrees C in the absence of melittin, the TPA is characterized by three decay components, corresponding to a rapid segmental motion (correlation time phi 1 = 2-3 microseconds), the uniaxial rotation of monomers or dimers (phi 2 = 16-22 microseconds), and the uniaxial rotation of larger oligomers (phi 3 = 90-140 microseconds). The effect of melittin is primarily to decrease the fraction of the more mobile monomer/dimer species (A2) while increasing the fractions of the larger oligomer (A3) and very large aggregates (A infinity). Time-resolved fluorescence anisotropy of the lipid-soluble probe diphenylhexatriene (DPH) shows only a slight increase in the lipid hydrocarbon chain effective order parameter, corresponding to an increase in lipid viscosity that is too small to account for the large decrease in protein mobility or inhibition of Ca-ATPase activity. Thus the inhibitory effect of melittin correlates with its capacity to aggregate the Ca-ATPase and is consistent with previously reported inhibition of this enzyme under conditions that increase protein-protein interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号