首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have tested in cultured cells the capacity of antisense and antigene PNAs to inhibit, in a sequence specific manner, the expression of oncogenes in leukaemia and pancreatic carcinoma cells. The results observed appeared promising and suggest that PNA may play in the future an important role in targeting disease-related genes.  相似文献   

2.
The use of antisense RNA or of antisense oligonucleotides for the specific control of viral or cellular genes expression has undergone rapid developments recently; their respective advantages and drawbacks will be discussed. Progresses in oligonucleotides chemistry have lead to the synthesis of analogs with improved pharmacological properties. Besides the antisense approach, which usually targets translation initiation or splicing sites, it is possible to interfere specifically with gene expression through triple helix formation (anti-gene strategy) or through the titration of regulatory proteins (sense approach). A major problem encountered in the use of synthetic oligonucleotides is their delivery to their nuclear or cytoplasmic targets after cell uptake by an endocytic pathway; our own work in this field will be discussed. Finally, we will describe the strategies followed by our group to improve the bioavailability of antisense oligonucleotides, as for instance conjugation to poly (L-lysine) or encapsidation in antibody-targeted liposomes.  相似文献   

3.
Acinetobacter baumannii causes common and severe community- and hospital-acquired infections. The increasing emergence of multidrug-resistant (MDR) and pan-drug resistant A. baumannii has limited the therapeutic options, highlighting the need for new therapeutic strategies. The goal of this study was to investigate whether antisense peptide nucleic acids (PNAs) could mediate gene-specific inhibition effects in MDR A. baumannii. We described a screening strategy based on computational prediction and dot hybridization for identifying potential inhibitory PNAs, and evaluated the in vitro growth inhibition potency of two PNAs conjugated to the (KFF)3K peptide (pPNA1 and pPNA2), both of which targeted the growth essential gene gyrA of A. baumannii. Both pPNAs showed strong inhibition effects on bacterial growth and gyrA mRNA expression in a dose-dependent manner. The lowest inhibitory and bactericidal concentration were 5 and 10 μM, respectively. Combination of the two pPNAs showed superimposed effect other than synergistic effect. Control PNAs without (KFF)3K peptide conjugation or with mismatched antisense sequence had no inhibition effects on bacterial growth or mRNA expression. Our study suggests that anti-gyrA pPNAs can efficiently inhibit gene expression and bacterial growth, and has the potential as a new therapeutic option for MDR A. baumannii.  相似文献   

4.
Antisense agents that inhibit genes at the mRNA level are attractive tools for genome-wide studies and drug target validation. The approach may be particularly well suited to studies of bacteria that are difficult to manipulate with standard genetic tools. Antisense peptide nucleic acids (PNA) with attached carrier peptides can inhibit gene expression in Escherichia coli and Staphylococcus aureus. Here we asked whether peptide-PNAs could mediate antisense effects in Mycobacterium smegmatis. We first targeted the gfp reporter gene and observed dose- and sequence-dependent inhibition at low micromolar concentrations. Sequence alterations within both the PNA and target mRNA sequences eliminated inhibition, strongly supporting an antisense mechanism of inhibition. Also, antisense PNAs with various attached peptides showed improved anti-gfp effects. Two peptide-PNAs targeted to the essential gene inhA were growth inhibitory and caused cell morphology changes that resemble that of InhA-depleted cells. Therefore, antisense peptide-PNAs can efficiently and specifically inhibit both reporter and endogenous essential genes in mycobacteria.  相似文献   

5.
6.
7.
When human myeloid leukemia HL-60 cells were induced to differentiate into mature cells by dimethyl sulfoxide or retinoic acid, the amount of myeloperoxidase activity per cell decreased to 20 to 30% of that of uninduced cells, and the rate of myeloperoxidase biosynthesis decreased to an undetectable level in 19 h after induction of differentiation. After 19-h exposure to an inducer, the cells could not resume myeloperoxidase synthesis on further incubation in inducer-free medium. When polysomes and mRNAs prepared from untreated and treated cells were translated in rabbit reticulocyte lysates, the former showed myeloperoxidase polypeptide synthesis, and the latter did not. These results indicate that the inability of induced cells to synthesize myeloperoxidase is due to the absence of myeloperoxidase mRNA.  相似文献   

8.
The methylation inhibitors Neplanocin A (Nep A), 3'-deazaadenosine (dzAdo), and 3-deaza(+/-)aristeromycin (Dari) were tested for their effect on the expression of histone H2B, actin, and the protooncogenes c-myc, and v-fos. Nep A and Dari bind to the S-adenosylhomocysteine hydrolase resulting in the accumulation of S-adenosylhomocysteine, while dzAdo served as a substrate for the enzyme. With dzAdo, inordinant amounts of 3-deazaadenosylhomocysteine (dzAdoHcy) accumulated in the cell, provided L-homocysteine (Hcy) was present. When added at sublethal concentrations, the methylation inhibitors had little or no effect on c-myc, v-fos, histone H2B, or actin expression, nor did any significant number of the drug-treated cells demonstrate myeloid characteristics. However, growth and gene expression were markedly inhibited upon the addition of Hcy and dzAdo. One of the earliest effects of dzAdoHcy on HL-60 cells was the disappearance of c-myc mRNA. Within 1 h of the addition of dzAdo and Hcy, only trace amounts of c-myc mRNA were detectable. After 4-5 h v-fos, histone H2B, and actin mRNAs also decreased to about 40% of control levels. Differences in the stability of preexisting mRNAs would appear to account for these results. Within 1 h following the addition of dzAdo and Hcy, the synthesis of rRNA and mRNA were completely blocked as measured by the incorporation of [3H]uridine.  相似文献   

9.
Peptide nucleic acids (PNAs) may be a potent tool for gene function studies in medically important parasitic organisms, especially those that have not before been accessible to molecular genetic knockout approaches. One such organism is Entamoeba histolytica, the causative agent of amebiasis, which infects about 500 million people and is the cause of clinical disease in over 40 million each year, mainly in the tropical and subtropical world. We used PNA antisense oligomers to inhibit expression of an episomally expressed gene (neomycin phosphorotransferase, NPT) and a chromosomal gene (EhErd2, a homolog of Erd2, a marker of the Golgi system in eukaryotic cells) in axenically cultured trophozoites of E. histolytica. Measurement of NPT enzyme activity and EhErd2 protein levels, as well as measurement of cellular proliferation, revealed specific decreases in expression of the target genes, and concomitant inhibition of cell growth, in trophozoites treated with micromolar concentrations of unmodified antisense PNA oligomers.  相似文献   

10.
Human promyelocytic leukemia HL-60 cells have been used as a model to study both the expression of matrix-metalloproteinases and the mechanisms of programmed cell death. In the present study we examined the expression of these proteases in HL-60 cells stimulated by different apoptotic triggers. As shown by zymography, HL-60 cells released three major isofroms of the matrix-degrading proteases; when the leukemic cells were grown in serum-free conditions, as well as after hyperthermia and methotrexate treatment, we found a significant loss of the constitutive production of the 92 kDa matrix-metalloprotease, with an unequivocable molecular and ultrastructural evidence of programmed cell death. These results suggest that in HL-60 cells the expression/release of matrix metalloproteases can be down-regulated in the presence of the apoptotic-induced alterations, and that the decreased matrix-degrading capacity of this leukemic cell line during apoptosis may reduce its invasive potential.  相似文献   

11.
In recent years, successful examples of antisense oligonucleotide (AS) therapy for genetic diseases have stimulated scientists to investigate its application on cancer diseases. AS can be used to down-regulate the mRNA and protein expression by annealing to specific region of the target mRNA which is responsible for the malignancy. Glucose transporter 5 (Glut5) is a tissue specific transporter that can be found on breast cancer tissues but not on normal breast tissues. Therefore, it is of clinical interest to investigate whether AS against Glut5 mRNA can tackle breast cancer. In this study, two cell lines, MCF-7 which is estrogen-receptor positive and MDA-MB-231 which is estrogen-receptor negative, were used to mimic breast cancer tissues at early and late stages, respectively. A 15-base sequence around the start codon of Glut5 was used. It was found that AS against Glut5 exerted anti-proliferative effect on both of these two breast tumor cell lines and seemed to exert its effect via the suppression of expression of Glut5 proteins in the cells. AS against Glut5 exhibited no effect on human hepatoma HepG2 cells which do not possess any Glut5. The results imply an alternative way in treating breast tumor as the AS against Glut5, unlike tamoxifen, takes effect on breast tumor cells via suppressing the expression of Glut5 that they specifically possess, and regardless whether the breast tumors are estrogen dependent or not.  相似文献   

12.
Suppressors of cytokine signaling (SOCS) proteins possess common structures, a SOCS box at the C-terminus and a SH2 domain at their center. These suppressors are inducible in response to cytokines and act as negative regulators of cytokine signaling. The ASB proteins also contain the SOCS box and the ankyrin repeat sequence at the N-terminus, but do not have the SH2 domain. Although Socs genes are directly induced by several cytokines, no Asb gene inducers have been identified. In this study, we screened the specific genes expressed in the course of differentiation of HL-60 cells, and demonstrated that ASB-2, one of the ASB proteins, was rapidly induced by all-trans retinoic acid (ATRA). Typical retinoid receptors (RARs) or retinoid X receptors (RXRs) binding element (RARE/RXRE) were presented in the promoter of the Asb-2 gene. We showed that RARalpha, one of the RARs, binds to the RARE/RXRE in the Asb-2 promoter. In addition, we demonstrated by luciferase reporter assay that this element was a functional RARE/RXRE. These findings indicate that ASB-2 is directly induced by ATRA and may act as a significant regulator, underlying such physiological processes as cell differentiation.  相似文献   

13.
Myeloperoxidase synthesis during induction of differentiation of human promyelocytic leukemia HL-60 cells by 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. Differentiation was characterized by morphological changes, arrest of cell proliferation, development of cell adherence, and increased secretion of lysozyme. The cellular myeloperoxidase activity decreased early during induction of differentiation by TPA. Pulse-labeling experiments indicated that the rate of myeloperoxidase synthesis decreased to an undetectable level in cells exposed to TPA for 22 h. The relative amounts of myeloperoxidase mRNA in TPA-treated and untreated cells were determined by measuring translatable mRNA activity in a reticulocyte lysate system. Reduction in the myeloperoxidase mRNA level was observed as early as after 3 h treatment with TPA, and no myeloperoxidase mRNA was detected after 24 h. Time course experiments indicated that the time required for 50% reduction of myeloperoxidase mRNA in TPA-treated cells was approximately 5 h. These results suggest that TPA induces decrease of myeloperoxidase activity in HL-60 cells at a pretranslational level.  相似文献   

14.
Gene expression spectra in human leukemia HL-60 cells treated with EGCG   总被引:2,自引:0,他引:2  
Cao J  Ren LL  Liu JW  Li Y  Qu HY 《Mutation research》2004,556(1-2):193-200
To decipher the molecular mechanism of EGCG induced HL-60 cell apoptosis, alterations of gene expression spectra in HL-60 cell line cells after treatment with EGCG were screened by cDNA chip, and analyzed with the GenePix 3.0 twice; and the cDNA chip results further identified by RT-PCR. Ninety-seven genes among the total 8398 (1.15%) showed consistent significant differential expression in the duplicated cDNA chip assessments. Thirty-nine genes (40.2%) were up-regulated and 58 genes (59.8%) were down-regulated; and the randomly selected four performed RT-PCR results agreed with the cDNA chip data. The results suggest that the apoptosis of HL-60 cells induced by EGCG is a progressive transformation process regulated by a variety of genes.  相似文献   

15.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.  相似文献   

16.
17.
18.
19.
20.
Peptide nucleic acid (PNA) is a synthetic DNA analogue that is resistant to nucleases and proteases and binds with exceptional affinity to RNA. Because of these properties PNA has the potential to become a powerful therapeutic agent to be used in vivo. Until now, however, the use of PNA in vivo has not been much investigated. Here, we have attempted to reduce the expression of the bcr/abl oncogene in chronic myeloid leukaemia KYO-1 cells using a 13mer PNA sequence (asPNA) designed to hybridise to the b2a2 junction of bcr/abl mRNA. To enhance cellular uptake asPNA was covalently linked to the basic peptide VKRKKKP (NLS-asPNA). Moreover, to investigate the cellular uptake by confocal microscopy, both PNAs were linked by their N-terminus to fluorescein (FL). Studies of uptake, carried out at 4 and 37°C on living KYO-1 cells stained with hexidium iodide, showed that both NLS-asPNA-FL and asPNA-FL were taken up by the cells, through a receptor-independent mechanism. The intracellular amount of NLS-asPNA-FL was about two to three times higher than that of asPNA-FL. Using a semi-quantitative RT– PCR technique we found that 10 µM asPNA and NLS-asPNA reduced the level of b2a2 mRNA in KYO-1 cells to 20 ± 5% and 60 ± 10% of the control, respectively. Western blot analysis showed that asPNA promoted a significant inhibition of p210BCR/ABL protein: residual protein measured in cells exposed for 48 h to asPNA was ~35% of the control. Additionally, asPNA impaired cell growth to 50 ± 5% of the control and inhibited completion of the cell cycle. In summary, these results demonstrate that a PNA 13mer is taken up by KYO-1 cells and is capable of producing a significant and specific down-regulation of the bcr/abl oncogene involved in leukaemogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号