共查询到20条相似文献,搜索用时 8 毫秒
1.
Erythrocyte-ghost Ca2+-stimulated Mg2+-dependent adenosine triphosphatase in Duchenne muscular dystrophy. 总被引:1,自引:0,他引:1 下载免费PDF全文
The Ca2+-stimulated Mg2-dependent ATPase activities (Ca2+-ATPase) of erythrocyte-ghost membranes from patients with Duchenne muscular dystrophy (DMD) and carriers of DMD were compared with activities of normal controls. The Ca2+-ATPase activity of DMD-patient ghost preparations was found to follow the same pattern of activation by Ca2+ as the control membranes. However, the Ca2+-ATPase activity in DMD and some DMD-carrier preparations was substantially elevated compared with controls. To characterize further the elevated Ca2+-ATPase activity found in DMD-patient ghost membrane preparations, we estimated kinetic parameters using both fine adjustment and weighting methods to analyse our experimental data. It was established that in both DMD and DMD-carrier preparations the increase in Ca2+-ATPase activity was reflected by a significant increase in Vmax. rather than by any change in Km. The response of the membrane Ca2+-ATPase activity to changes in temperature was also investigated. In all preparations a break in the Arrhenius plot occurred at 20 degrees C, and in DMD and DMD-carrier preparations an elevated Ca2+-ATPase activity was detected at all temperatures. Above 20 degrees C the activation energy for all types of preparation was the same, whereas below this temperature there appeared to be an elevated activation in DMD and DMD-carrier preparations compared with normal controls. The concept that a generalized alteration in the physicochemical nature of the membrane lipid domain may be responsible for the many abnormal membrane properties reported in DMD is discussed. 相似文献
2.
The effect of calmodulin on the phosphoprotein intermediate of Mg2+-dependent Ca2+-stimulated adenosine triphosphatase in human erythrocyte membranes. 下载免费PDF全文
The effect of calmodulin on the formation and decomposition of the Ca2+-dependent phosphoprotein intermediate of the (Mg2+ + Ca2+)-dependent ATPase in erythrocyte membranes was investigated. In the presence of 60 microM-Ca2+ and 25 microM-MgCl2, calmodulin (0.5-1.5 microgram) did not alter the steady-state concentration of the phosphoprotein, but increased its rate of decomposition. Higher calmodulin concentrations significantly decreased the steady-state concentration of phosphoprotein. Calmodulin (0.5-1.7 microgram) increased Ca2+-transport ATPase activity by increasing the turnover rate of its phosphoprotein intermediate. Increasing the MgCl2 concentration from 25 microM to 250 microM increased the (Mg2+ + Ca2+)-dependent ATPase activity, but decreased the concentration of the phosphoprotein intermediate. Similarly to calmodulin, MgCl2 increased the turnover rate of the Ca2+-transport ATPase complex (about 3-fold). At the higher MgCl2 concentration calmodulin did not further affect the decomposition of the phosphoprotein intermediate. It was concluded that both calmodulin and MgCl2 increase the turnover of the Ca2+-pump by enhancing the decomposition of the Ca2+-dependent phosphoprotein intermediate. 相似文献
3.
Gastric microsomes do not contain any significant Ca2+-stimulated ATPase activity. Trypsinization of pig gastric microsomes in presence of ATP results in significant (2-3 fold) increase in the basal (with Mg2+ as the only cation) ATPase activity, with virtual elimination of the K+-stimulated component. Such treatment causes unmasking of latent Mg2+-dependent Ca2+-stimulation ATPase. Other divalent cations such as Sr2+, Ba2+, Zn2+, and Mn2+ were found ineffective as a substitute for Ca2+. Moreover, those divalent cations acted as inhibitors of the Ca2+-stimulated ATPase activity. The pH optimum of the enzyme is around 6.8. The enzyme has a Km of 70 microM for ATP and the Ka values for Mg2+ and Ca2+ are about 4 x 10(-4) and 10(-7) M, respectively. Studies with inhibitors suggest the involvement of sulfhydryl and primary amino groups in the operation of the enzyme. Possible roles of the enzyme in gastric H+ transport have been discussed. 相似文献
4.
Both the Ca2+-ATPase activity and the Ca2+ uptake in a microsomal fraction of rat submandibular gland were inhibited by the addition of indomethacin in vitro. The decrease of both the Ca2+-ATPase activity and the Ca2+ uptake caused by the drug closely paralleled each other (r = 0.97). The inhibitory manner of indomethacin on Ca2+-ATPase and Ca2+ uptake was noncompetitive for Ca2+. These results suggest that the Ca2+-ATPase in the microsomal fraction of rat submandibular gland is a Ca2+ pump in this tissue. 相似文献
5.
An ATPase activity specifically stimulated by micromolar Ca2+ concentrations has been identified in association with rabbit neurophil membranes. These studies provide the basis of further characterization of the Ca2+-ATPase activity with regard to neutrophil function. 相似文献
6.
The effect of phospholipase A2 on the Ca2+-ATPase (EC 3.6.1.3) activity in the microsomal fraction of rat submandibular gland was kinetically studied in vitro. The Ca2+-ATPase activity was significantly increased by the treatment with phospholipase A2 in the presence of bovine serum albumin as a scavenger for hydrolyzed products. When the microsomal fraction was incubated with phospholipase A2 in the absence of bovine serum albumin, the Ca2+-ATPase activity was not altered. The Vmax and Km values for both ATP and Ca2+ were increased by the phospholipase A2 treatment, respectively. These results indicated that the activation of Ca2+-ATPase by the phospholipase A2 treatment is due to the increase of Vmax. 相似文献
7.
An ATPase activity specifically stimulated by micromolar Ca2+ concentrations has been identified in association with rabbit neurophil membranes. These studies provide the basis of further characterization of the Ca2+-ATPase activity with regard to neutrophil function. 相似文献
8.
Physiological suppression of a transport defect in Escherichia coli mutants deficient in Ca2+, Mg2+-stimulated adenosine triphosphatase. 下载免费PDF全文
Transport properties of membrane vesicles isolated from two adenosine triphosphatase-deficient mutants of Escherichia coli, NR70 and DL54, were compared with those of vesicles prepared from the corresponding parental strains. As reported previously (Rosen, 1973; Altendorf et al., 1974), vesicles prepared from these mutants grown under aerobic conditions exhibited defective amino acid transport, and activity was restored after treatment with dicyclohexylcarbodiimide. In sharp contrast, however, vesicles isolated from the same mutants grown anaerobically in the presence of nitrate exhibited completely normal transport activity when assayed under either anaerobic or aerobic conditions. Suppression of the transport defect was not due to the manner by which the vesicles were prepared, and the adenosine triphosphatase deficiency was not ameliorated by anaerobic growth in the presence of nitrite. Finally, the transport activity of vesicles prepared from the mutants grown under aerobic conditions was relatively resistant to the effect of 1.0 M guanidine hydrochloride extraction, whereas the activity of vesicles prepared from mutants grown anaerobically was totally refractory to the effect of the chaotrope. 相似文献
9.
Effect of indomethacin on Ca2+-stimulated adenosine triphosphatase in the synaptic vesicles of rat brain in vitro 总被引:2,自引:0,他引:2
1. Indomethacin inhibits calcium-stimulated adenosine triphosphatase (Ca2+-ATPase), calcium, magnesium-stimulated adenosine triphosphatase (Ca2+,Mg2+-ATPase) and magnesium-stimulated adenosine triphosphatase (Mg2+-ATPase) activities in rat brain synaptic vesicles in vitro. 2. The Ca2+-ATPase activity is most strongly affected by this drug all of the activities of ATPases tested. 3. The decrease of Ca2+-ATPase activity by addition of indomethacin is due to a decrease of Vmax. 4. The Ki values for this drug for ATP and Ca2+ in Ca2+-ATPase were 1.13 mM and 0.68 mM, respectively. 相似文献
10.
Ni2+ inhibited Ca2+-stimulated adenosine triphosphatase activity in the microsomal fraction of the rat parotid gland in vitro. The Ni2+ concentration required for 50% inhibition was 0.45 mM. Inhibition mechanisms of Ni2+ for Ca2+ and ATP were of the competitive type and the noncompetitive type, respectively. The Ki values of Ni2+ for Ca2+ and ATP were 0.52 and 0.59 mM, respectively. The inhibitory effect of Ni2+ was reversible. 相似文献
11.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump. 相似文献
12.
Activation of erythrocyte Ca2+-plus-Mg2+-stimulated adenosine triphosphatase by protein kinase (cyclic AMP-dependent) inhibitor. Comparison with calmodulin 下载免费PDF全文
Purified protein kinase (cyclic AMP-dependent) inhibitor (PKI) from bovine heart stimulated Ca(2+)+Mg(2+)-stimulated ATPase activity in human erythrocytes, the stimulation being maximal at 2mug/0.6ml. By contrast, PKI from rabbit skeletal muscle had no effect. Bovine heart PKI stimulated Ca(2+)+Mg(2+)-stimulated ATPase by increasing the Ca(2+)-sensitivity of the enzyme. This contrasted with the stimulation by calmodulin, which increased the maximum velocity of the Ca(2+)+Mg(2+)-dependent ATPase in addition to its effect on the Ca(2+)-sensitivity. Both membrane-bound and Triton X-100-solubilized Ca(2+)+Mg(2+)-stimulated ATPase activities were stimulated by PKI, indicating that the stimulation did not require an intact membrane structure. At low Ca(2+) concentration the stimulation by PKI and saturating concentrations of calmodulin were additive, suggesting that the two effectors acted by distinct mechanisms. Although 5mum-cyclic AMP inhibited Ca(2+)+Mg(2+)-stimulated ATPase activity by about 20% when measured at low ATP concentrations, probably by stimulation of phosphorylation by an endogenous protein kinase, the stimulation by PKI (about 100%) was not solely due to its antagonism of the protein kinase. This interpretation was supported by a number of observations. First, modification of arginine residues of bovine heart PKI abolished its inhibition of cyclic AMP-dependent protein kinase, but had no effect on the stimulation of Ca(2+)+Mg(2+)-stimulated ATPase. Secondly, trifluoperazine (20mum) antagonized the stimulation of Ca(2+)+Mg(2+)-dependent ATPase by PKI, similarly to its antagonism of calmodulin stimulation, but it did not affect the inhibition of protein kinase by PKI. We conclude that different mechanisms are involved in the inhibition of protein kinase and the stimulation of Ca(2+)+Mg(2+)-stimulated ATPase by PKI. 相似文献
13.
A unique ribonuclease, active only in the presence of Ca2+, was present in lactating mammary gland and milk of the rat. This enzyme was absent from virgin-rat mammary gland and non-mammary tissues of lactating rats. The presence of moderate activity in differentiated mammary tumours, together with an increase in activity in normal tissue parelleling development of mammary function, identify this enzyme as a marker of mammary differentiation in the rat. 相似文献
14.
Ca2+-Mg2+-activated adenosine triphosphatase in plasma and granule membranes in non-secreting and secreting mast cells 总被引:1,自引:0,他引:1
An adenosine triphosphatase (ATP) activated by Ca2+ or Mg2+ is shown morphologically on the outer surface of non-secreting and secreting rat peritoneal mast cells. ATPase having the same properties is also seen on the external surface of the other peritoneal cells, i.e. macrophages, mononuclear cells and lymphocytes. When histamine release from the mast cells was induced by exposing them to antigen (anaphylactic reaction) or compound 48/80, ATPase activated by Ca2+ or Mg2+ could in addition be demonstrated in the granule membranes. Granule membrane ATPase is also shown in non-secreting mast cells after freezing and thawing. ATPase on the outer surface of the plasma membrane is seen in the secreting mast cells as in the non-secreting cells except in the areas where the plasma membrane fuses with the granule membrane. The role of ATPase in granule secretion process has been discussed. 相似文献
15.
H Ohzeki N Terao M Hayakawa H Takiguchi 《The International journal of biochemistry》1983,15(5):603-607
1. The Ca2+-ATPase activity in microsomes of rat submandibular gland was inhibited by pyridoxal 5'-phosphate in vitro. 2. The dissociation constant of the enzyme-pyridoxal 5'-phosphate complex was estimated to be 6.5 mM. 3. The inhibition of pyridoxal 5'-phosphate for both ATP and Ca2+ was competitive. 4. The order of inhibitory effectiveness of pyridoxal 5'-phosphate analogs was pyridoxal 5'-phosphate greater than pyridoxal HCl greater than pyridoxamine 5'-phosphate greater than pyridoxamine HCl. 5. The enzyme-pyridoxal 5'-phosphate complex was nonreducible with sodium borohydride. 相似文献
16.
E Quist 《Archives of biochemistry and biophysics》1985,236(1):140-149
The properties of the enzymes involved in Ca2+-stimulated breakdown of phosphatidylinositol 4'-phosphate (PIP), phosphatidylinositol 4',5'-bisphosphate (PIP2), and phosphatidic acid (PA) in rabbit erythrocyte ghosts were studied. At 25 degrees C, 1 to 180 microM Ca2+ rapidly stimulated the breakdown of PIP and PIP2, and maximal breakdown occurred within 10 minutes at all Ca2+ concentrations. The rate and the total amount of breakdown of PA, PIP, and PIP2 increased with Ca2+ concentration. MgCl2 inhibited the rate of Ca2+-stimulated breakdown of PIP and PIP2 at Ca2+ concentrations less than 10 microM, but did not have any appreciable effects at higher Ca2+ concentrations. MgCl2 also protected against Ca2+-stimulated breakdown of PA. In the presence and absence of 5 mM MgCl2, Ca2+ stimulated half-maximal breakdown of PIP and PIP2 at 2-3 microM under hypotonic and isotonic conditions. In the presence of 5 mM MgCl2, Ca2+-stimulated breakdown of PIP and PIP2 was associated with the release of Pi and inositol bisphosphate. In the absence of MgCl2, Ca2+ stimulated the release of 32P-labeled Pi, inositol bisphosphate, and inositol trisphosphate from labeled PIP, PIP2, and PA. Ca2+ increased phosphatidylinositol content and decreased PIP and PIP2 content in these membranes. The results of this investigation suggest that Ca2+ stimulates the breakdown of polyphosphoinositides by stimulating polyphosphoinositide phosphomonoesterase and phosphodiesterase activities in rabbit erythrocyte ghosts. These activities were activated by less than 3 microM Ca2+ in the presence of MgCl2 under hypotonic or isotonic conditions. These Ca2+-stimulated polyphosphoinositide phosphoesterase activities could therefore be active under physiological conditions in normal rabbit erythrocytes. 相似文献
17.
18.
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine. 相似文献
19.
Controlled tryptic digestion of purified rat skeletal muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-adenosine triphosphate yields two products designated Fragments 3a and 3b with molecular weights of 65,000 and 56,000 respectively. The isolation of these products in high yield should facilitate exploration of the molecular characteristics of this adenosine triphosphatase. A simple, rapid method for accomplishing this isolation was developed which provides a high yield and utilizes mild conditions. The fragments obtained by this method were used to determine the phospholipid and sulfhydryl contents of Fragments 3a and 3b. In addition, information was obtained on the orientation of these adenosine triphosphatase components in the enzyme lipoprotein complex. 相似文献
20.
Cooperative effects of Ca2+ and Sr2+ on sarcoplasmic reticulum adenosine triphosphatase 总被引:2,自引:0,他引:2
J A Holguín 《Archives of biochemistry and biophysics》1986,251(1):9-16
The intrinsic fluorescence of purified Ca-ATPase from skeletal sarcoplasmic reticulum was measured in the presence of various concentrations of Ca2+, Sr2+, and Ba2+. Ca2+ and Sr2+ induce positive cooperative fluorescence enhancement, whereas Ba2+ does not change the fluorescence of ATPase. ATP does not seem to modify the kinetic parameters of Ca2+ and Sr2+ binding to ATPase. Nevertheless, p-nitrophenylphosphate hydrolysis, activated by Ca2+ or Sr2+ at various pHs, changes the affinity and the cooperative behavior for both cations and two components appear in the Hill plots. For Ca2+, nH of 1.6 to 3.5 were obtained, and 1.06 to 1.83 for Sr2+; nH changes of the second component seem to be pH dependent. Differences in the ratio between rates of Ca2+ transport and substrate hydrolysis by sarcoplasmic reticulum were found, i.e., two for ATP and one for p-nitrophenylphosphate. For Sr2+ this ratio was one for either ATP or p-nitrophenylphosphate. 相似文献