首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study provides information on the rates of DNA synthesis, sites of DNA synthesis, and DNA content of the avian salt gland during the osmoticstressing (plasma membrane synthesis) and destressing (plasma membrane turnover) cycle, in an effort to better understand the relationship of cell turnover to the initial events in plasma membrane amplification, differentiation, and turnover. The rate of DNA synthesis increases 12–24 h after the onset of osmotic stress, is maximal at about 24 h of osmotic stress, and decreases thereafter in fully stressed and destressed glands. The maximum DNA and protein content, and the maximum protein/DNA ratio are obtained after about 3 days of stress. Autoradiograms show that at 24 h of stress 70–80% of DNA synthesis occurs in connective tissue cells and 20–30% in parenchymal cells, but by 6 days of stress, synthesis occurs about equally in these cell groups. Because destressing is characterized by a large decrease in plasma membrane and in glandular protein, but by little DNA turnover or loss, the loss of plasma membrane is likely due to some type of cell dedifferentiation rather than cell turnover.  相似文献   

2.
The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.  相似文献   

3.
本文应用弹性分析和边际分析数学方法对离体厚朴叶片衰老中的SOD活性对叶绿素、蛋白质及质膜透性效应进行了研究。结果表明:厚朴叶片衰老中,SOD活性对叶绿素或蛋白质或质膜透性的边际量和弹性系数的效应,是随着外源营养条件和温度变化而变化的。SOD活性与叶绿素及蛋白质的弹性系数呈显著正相关,SOD对它们的效应处于递增阶段,而SOD活性与质膜透性的弹性系数呈显著负相关,其效应处于负效应阶段。  相似文献   

4.
汞对玉米幼苗膜脂过氧化及体内保护系统的影响   总被引:10,自引:0,他引:10  
随着处理HgCl2浓度的升高,细胞膜脂质过氧化水平升高,细胞膜透性增大,CAT活性降低,SOD、POD活性升高,组织可溶性蛋白质含量升高。  相似文献   

5.
There is evidence that the plasma membrane (PM) permeability alterations might be involved in plant salt tolerance. This review presents several lines of evidence demonstrating that PM permeability is correlated with salt tolerance in plants. PM injury and hence changes in permeability in salt sensitive plants is brought about by ionic effects as well as oxidative stress induced by salt imposition. It is documented that salinity enhances lipid peroxidation as well as protein oxidative damage, which in turn induces permeability impairment. PM protection, and thus retained permeability, in tolerant plants under salt imposition could be achieved through increasing antioxidative systems and thereby reducing lipid peroxidation and protein oxidative damage of PM. It appears that specific membrane proteins and/or lipids are constitutive or induced under salinity, which may contribute to maintenance of membrane structure and function in salt tolerant plant species. Furthermore, protecting agents (e.g., glycinebetaine, proline, polyamines, trehalose, sorbitol, mannitol) accumulated in salt tolerant species/cultivars may also contribute to PM stabilization and protection under salinity. Based on the presented evidence that PM permeability correlates with plant salt tolerance, we suggest that PM permeability is an easy and useful parameter for selection of genotypes of agriculture crops adapted to salt stress.  相似文献   

6.
The development of adriablastin resistance in Djungarian hamster DM-15 cells is accompanied by the appearance of small chromatin bodies (SCB) and long homogeneously staining regions (HSRs) in the chromosomes--the structures that contained amplified genes. The pattern of karyotypic alterations (the appearance of additional chromosome 4, and emergence of SCB, formation of the HSRs in one of three of chromosome 4, transposition of the HSRs from chromosome 4 to other chromosomes) during the development of adriablastin resistance is identical to that found in these cells before, namely during the development of colchicine resistance. Adriablastin- and colchicine-resistant cells have similar changes in plasma membrane permeability for 3H-colchicine, 3H-actinomycin D, 3H-puromycin, 3H-cytochalasin B, and 3H-vinblastine. Apparently, adriablastin resistance has the same mechanism as colchicine resistance, being connected with gene amplification and decreased plasma membrane permeability for these drugs.  相似文献   

7.
Oxidation induces ClC-3-dependent anion channels in human leukaemia cells   总被引:1,自引:0,他引:1  
Kasinathan RS  Föller M  Lang C  Koka S  Lang F  Huber SM 《FEBS letters》2007,581(28):5407-5412
To test for redox regulation of anion channels in erythroid cells, we exposed K562 cells to oxidants and measured changes in transmembrane Cl(-) currents using patch-clamp, and in intracellular Cl(-) content using the Cl(-) selective dye MQAE. Oxidation with tert-butylhydroperoxide or H(2)O(2) produced a plasma membrane anion permeability with a permselectivity of NO(3)(-)>lactate(-)>gluconate(-). The permeability increase was paralleled by insertion of ClC-3 protein into the plasma membrane as evident from immunofluorescence microscopy and surface biotinylation. Down-regulation of ClC-3 protein by RNA interference as assessed by immunoblotting decreased the oxidation-stimulated permeability. In conclusion, oxidation induces surface expression of ClC-3 and activation of a ClC-3-dependent anion permeability in K562 cells.  相似文献   

8.
Aquaporins (AQPs) are channel proteins that facilitate and regulate the permeation of water across biological membranes. Black mMexican sweet suspension cultured cells are a convenient model for studying the regulation of maize AQP expression and activity. Among other advantages, a single cell system allows the contribution of plasma membrane AQPs (PIPs, plasma membrane intrinsic proteins) to the membrane water permeability coefficient (Pf) to be determined using biophysical measurement methods, such as the cell pressure probe or protoplast swelling assay. We generated a transgenic cell culture line expressing a tagged version of ZmPIP2;6 and used this material to demonstrate that the ZmPIP2;6 and ZmPIP2;1 isoforms physically interact. This kind of interaction could be an additional mechanism for regulating membrane water permeability by acting on the activity and/or trafficking of PIP hetero-oligomers.Key words: aquaporin, suspension cultured cells, hetero-oligomerization, maize, plasma membrane intrinsic protein, protein interaction, water movement  相似文献   

9.
Cytoplasmic free Ca2+ (Ca2+i) was chelated to 10-20 nM in the macrophage cell line J774 either by incubation with quin2 acetoxymethyl ester in the absence of external Ca2+ (Di Virgilio, F., Lew, P.D., and Pozzan, T. (1984) Nature 310, 691-693) or by loading [ethyl-enebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) into the cytoplasm via reversible permeabilization of the plasma membrane with extracellular ATP (Steinberg, T.H., Newman, A.S., Swanson, J.A., and Silverstein, SS.C. (1987) J. Biol. Chem. 262, 8884-8888; Di Virgilio, F., Meyer, B.C., Greenberg, S., and Silverstein, S.C. (1988) J. Cell Biol. 106, 657-666). After removal of ATP from the incubation medium, ATP-permeabilized Ca2+i-depleted macrophages recovered a near-normal plasma membrane potential which slowly depolarized over a 2-4 h incubation at low [Ca2+]i. In both ATP-treated and quin2-loaded cells, depolarization of plasma membrane potential was paralleled by an increase in plasma membrane permeability to low molecular weight aqueous solutes such as eosin yellowish (Mr 692), ethidium bromide (Mr 394), and lucifer yellow (Mr 463). This increased plasma membrane permeability was not accompanied by release of the cytoplasmic marker lactic dehydrogenase for incubations up to 4 h and was likely a specific effect of Ca2+i depletion since it was not caused by: (i) the mere incubation of macrophages with extracellular EGTA, i.e. at near-normal [Ca2+]i; and (ii) loading into the cytoplasm of diethylenetriaminepentaacetic acid, a specific chelator of heavy metals with low affinity for Ca2+. Treatment of Ca2+i-depleted cells with direct (phorbol 12-myristate 13-acetate) or indirect (platelet-activating factor) activators of protein kinase C prevented the increase in plasma membrane permeability. Down-regulation of protein kinase C rendered Ca2+i-depleted macrophages refractory to the protective effect of phorbol 12-myristate 13-acetate. This report suggests a role for Ca2+i and possibly protein kinase C in the regulation of plasma membrane permeability to low molecular weight aqueous solutes.  相似文献   

10.
The osmotic water permeability of plasma membrane vesicles was examined after isolation from the roots of 7-day-old etiolated pea ( Pisum sativum, cv. Orlovchanin) seedlings grown at optimal temperature and those exposed to 1-day chilling at 8°C in the end of the growth period. The homogenization medium for obtaining plasma membranes was supplemented with either SH-reagents or protein phosphatase inhibitors. The plasmalemma vesicles were purified from the microsome fraction by means of two-phase polymer system. The osmotic water permeability of membrane vesicles was evaluated from the rate of their osmotically induced shrinkage. The lowering of growth temperature was accompanied by the increase in osmotic water permeability of plasmalemma. These changes occurred without the corresponding increase in aquaporin content or permeability of membrane lipid matrix. The membranes from cooled seedlings were markedly depleted in the content of SH-groups. Furthermore, the treatment of membrane samples with a thiol-reducing agent, tributylphosphine did not raise the SH-group content in membranes from chilled plants, unlike such changes in membranes from warm-grown plants. When the homogenization medium contained dithiothreitol and phenylarsine oxide (an inhibitor of tyrosine protein phosphatases), the osmotic permeability of plasmalemma in preparations from warm-grown seedlings also increased. Based on these results, it is supposed that aquaporin-mediated water permeability of membranes is regulated through different pathways under optimal and adverse conditions for plant growth. Direct action of endogenous SH redox regulators on aquaporin activity is likely under optimal growth conditions, while protein phosphatase might mediate changes in aquaporin activity under unfavorable growth conditions.  相似文献   

11.
Mechanisms of cell death induced by toxins probably involve one or more processes such as inhibition of protein synthesis and impairment of plasma membrane integrity leading to an increase in membrane permeability. Since one of the possible actions of mastoparan, a cationic tetradecapeptide from wasp venom, is to perturb membrane phospholipids resulting in an increase in membrane permeability, we studied the effect of chemically synthesized mastoparan on lactate dehydrogenase release (LDH), ethidium bromide and fluorescein accumulation in Madin-Darby Canine Kidney (MDCK) cultured cells. Our results demonstrated that mastoparan induced cytosolic LDH release, ethidium bromide accumulation and intracellular fluorescein depletion in MDCK cells. Neomycin, a polycationic aminoglycoside, interacts with anionic polyphosphoinositides at the plasma membrane. Since both mastoparan and neomycin are cationic peptides and react with the negatively charged membrane phospholipids, we studied the interaction of these two peptides on membrane permeability. Our results demonstrated that neomycin inhibited mastoparan-induced LDH release, ethidium bromide accumulation and intracellular fluorescein depletion.Abbreviations LDH Lactate Dehydrogenase - MDCK Madin Darby Canine Kidney  相似文献   

12.
The filling state of the intracellular Ca2+ stores of rat thymocytes regulates plasma membrane permeability to Mn2+, used here as a Ca2+ surrogate for plasma membrane Ca2+ channels. Emptying of the Ca2+ stores accelerated Mn2+ entry about 10-fold, and refilling with Ca2+ restored low Mn2+ permeability. The acceleration of Mn2+ entry observed in cells with empty intracellular Ca2+ stores was prevented by cytochrome P450 inhibitors. Imidazole antimycotics, especially econazole and miconazole, were the most potent inhibitors (IC50 approximately equal to 10(-6) M). The inhibitor sensitivity profile was similar to IA-type cytochrome P450. Calmodulin antagonists increased the plasma membrane permeability to Mn2+ in cells with filled Ca2+ stores, and this effect was also blocked by imidazole antimycotics. On this basis, we propose a model in which activation of a cytochrome P450, situated at the Ca2+ stores, opens a plasma membrane Ca2+ pathway. This activity would be inhibited by Ca2+ inside the stores by a calmodulin-dependent mechanism.  相似文献   

13.
线粒体PT孔参与甘草诱导MGC-803细胞凋亡的调控   总被引:2,自引:0,他引:2  
不久前我们从中药中首次筛选发现了甘草能显著诱导胃癌MGC-803细胞凋亡,本文进一步研究甘草诱导MGC-803细胞凋亡过程中凋亡百分率、线粒体膜电位、胞内游离钙、DNA电泳和细胞膜通透性以及染色质DNA凝聚的时相变化,并研究了线粒体PT孔专一抑制剂环孢菌素A(CsA)对凋亡过程的影响.我们观察到,细胞膜通透性增强、胞内游离钙升高和线粒体膜电位下降为细胞凋亡的早期事件,先于凋亡峰出现、染色质凝聚和DNA电泳梯状条带出现,CsA明显抑制线粒体膜电位下降,细胞膜通透性增强和胞内游离钙变化,并极大程度地延迟细胞凋亡过程.结果提示,钙和CsA敏感性的线粒体PT孔开放参与甘草提取物诱导MGC-803细胞凋亡的调控.  相似文献   

14.
In our previous studies, we have discovered that the extract of glycyrrhiza uralensis Fisch (EGUF) can induce obvious apoptosis in gastric cancer cell Line MGC-803. Here, further investigation was carried on about the time-lapse changes of mitochondria transmembrane potential, intracellular free calcium ions, DNA electrophoresis, plasma membrane permeability and chromatin condensation during the apoptotic process of MGC-803 induced by EGUF and the influences of MPT-specific inhibitor Cyclosporin A(CsA) on these changes. Enhancement of plasma membrane permeability with PI staining, increase of intracellular free calcium ion and decrease of mitochondria transmembrane potential are early events in apoptotic cascades, prior to the appearances of apoptotic peak, chromatin condensation and DNA ladder. CsA significantly inhibited enhancement of plasma membrane permeability, change of intracellular free calcium ions and decrease of mitochondria transmembrane potential, also greatly delayed the progress of apoptosis. Thus, our results suggest that calcium and CsA-sensitive MPT is involved in the apoptosis of MGC-803 induced by EGUF.  相似文献   

15.
1. Three soluble polysaccharides and a soluble protein containing hydroxyproline were secreted by sycamore suspension cultures. l-[1-(3)H]Fucose was incorporated solely into the fucose of fucoxyloglucan and l-[1-(14)C]arabinose mainly into the arabinose of arabino-galactan. [U-(14)C]Glucose was a general precursor for soluble protein and polysaccharides. 2. The steady-state rate of secretion of all the polymers was increased within seconds of adding various electrolytes and polyelectrolytes to the growth medium. The increased secretion was induced by cations at the outer surface of the plasma membrane. It was brought about by a stimulation of the normal mechanisms of cell-wall polysaccharide secretion. It was partly inhibited by anaerobiosis or sodium arsenate and was unaffected by temperature changes in the range 0-35 degrees C. 3. The precursor pool from which secretion was induced contained completely synthesized polysaccharides and was probably located in the Golgi-derived vesicles. The results indicated that the endoplasmic reticulum did not secrete polysaccharide directly to the cell exterior. 4. The various cations probably induced secretion by causing a depolarization of the negative electric potential of the cell surface, and this resulted in the fusion of vesicles with the plasma membrane. 5. Analogy with exocytosis and pinocytosis in various animal tissues suggested that the decreased surface potential brought about membrane fusion by causing an increase in plasma-membrane permeability to Ca(2+). 6. The results showed that the fusion of vesicles with the plasma membrane was rate-limiting and a potential control point. Auxin-stimulated cell-wall deposition could be a result of a stimulated influx of Ca(2+) causing vesicle fusion with the plasma membrane.  相似文献   

16.
Infection of chicken embryo fibroblasts by avian reovirus induces an increase in the permeability of the host plasma membrane at late, but not early, infection times. The absence of permeability changes at early infection times, as well as the dependence of late membrane modification on both viral protein synthesis and an active exocytic route, suggest that a virus-encoded membrane protein is required for avian reovirus to permeabilize cells. Further studies revealed that expression of nonstructural p10 protein in bacterial cells arrested cell growth and enhanced membrane permeability. Membrane leakiness was also observed following transient expression of p10 in BSC-40 monkey cells. Both its permeabilizing effect and the fact that p10 shares several structural and physical characteristics with other membrane-active viral proteins indicate that p10 is an avian reovirus viroporin. Furthermore, the fusogenic extracellular NH(2)-terminal domain of p10 appears to be dispensable for permeabilizing activity, because its deletion entirely abolished the fusogenic activity of p10, without affecting its ability to associate with cell membranes and to enhance membrane permeability. Similar properties have reported previously for immunodeficiency virus type I transmembrane glycoprotein gp41. Thus, like gp41, p10 appears to be a multifunctional protein that plays key roles in virus-host interaction.  相似文献   

17.
Although cholesterol is one of the major components of plasma membranes in eukaryotic cells, very little is known about its role in biological membranes. We reported previously (Okimasu et al., Cell Struct. Funct. 11, 273-283, 1986) that introduction of cholesterol into the liposomal membrane caused a decrease in membrane permeability, especially by the binding of cytoplasmic proteins to the liposomal membrane. The present study was carried out to further clarify the biochemical function of cholesterol in the membrane-protein interactions, especially under high osmotic pressure. The association of membranes with cytoplasmic proteins and their permeability were decreased by the introduction of cholesterol, but its effects were diminished in a hypertonic medium. The protein species associated with cholesterol-containing liposomes vary depending on the sort of hypertonic condition. It was suggested that since the degree of lipid packing by the cholesterol was reduced by the locally increased curvature in the lipid bilayer under high osmotic pressure, some cytoplasmic proteins can penetrate into the liposomal membrane.  相似文献   

18.
Diphtheria toxin (DT) in acidic media forms ion-conducting channels across the plasma membrane and inhibits protein synthesis of both highly and poorly DT-sensitive cell lines. This results in loss of cell potassium and in entry of both sodium and protons with a concomitant rapid lowering of membrane potential. The pH dependency of the permeability changes is similar to that of the inhibition of cell protein synthesis. DT-induced ion channels close when the pH of the external medium is returned to neutrality and cells recover their normal monovalent cation content. Similar permeability changes were induced by two DT mutants defective either in enzymatic activity or in cell binding, but not with a mutant defective in membrane translocation. The implication of these findings for the mechanism of DT membrane translocation is discussed.  相似文献   

19.
Summary Changes in protein synthesis, protein phosphorylation and lipid phosphorylation in the amphibian oocyte plasma membrane have been correlated with electrical changes following steroid induction of the completion of the first meiotic division. The oocyte first depolarizes from about –60 mV (inside negative) to about –25 mV 1 to 2 hr before breakdown of the large nucleus followed by a further depolarization beginning 3 to 6 hr after nuclear breakdown. The initial depolarization is associated with appearance of previously described cycloheximide-sensitive cytoplasmic factor(s) which induce both nuclear breakdown and plasma membrane depolarization. We found a similar ED50 (0.4 m) for cycloheximide inhibition of nuclear breakdown, membrane depolarization, and [3H]-leucine incorporation. Emetine (1nm to 1mm) was inactive. The period of cycloheximide sensitivity (first 5 hr) is essentially the same for plasma membrane depolarization phase following nuclear breakdown is associated with a marked increase in the rate of [3H]-leucine and [32PO4] incorporation into membrane protein and lipid. Polyacrylamide gel electrophoresis of membrane protein and lipoprotein indicated that a major newly synthesized membrane component is proteolipid. An increase in [32PO4] incorporation into membrane phosphatidylserine and phosphatidylethanolamine (with a decrease in phosphatidylcholine [32PO4] begins during the second depolarization phase and coincides with the appearance of excitability in the oocyte plasma membrane. In toto, the bulk of the biochemical changes (proteins, phosphoproteins, proteolipids, phospholipids) appear to be associated with plasma membrane components and coincide with stepwise changes in membrane permeability to specific ions (e.g. Cl).  相似文献   

20.
Summary Water uptake ofArabidopsis thaliana protoplasts was measured after transfer into hypo-osmotic conditions. The time-dependent swelling of protoplast populations was monitored by a Coulter counter device. In order to ascertain the contribution of the plasma membrane intrinsic protein 1b (PIP1b) to the membrane's water permeability, protoplasts of five different plant lines that were transformed with a PIP1b antisense construct were compared to controls. The size distribution of 5 independent protoplast preparations provided similar results for control and antisense lines under iso-osmolar conditions. After transfer into hypo-osmotic conditions, a time difference for the swelling of protoplasts from the different sources was observed. The sizes of control protoplasts changed in less than 20 s, which indicates high water influx rates. In contrast, the protoplast populations obtained from 5 different antisense plants took about 75 s to reach a steady-state cell size distribution. The difference in time by a factor of about 3 confirms the significance of the aquaporin PIP1b for the water permeability of plant plasma membranes and the cellular water transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号