首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+, K+, and Cl- transport in resting pancreatic acinar cells   总被引:2,自引:1,他引:1  
To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.  相似文献   

2.
Human platelets were loaded with the fluorescent Na(+)-sensitive dye sodium-binding benzofuran isophtalate (SBFI), and changes in the fluorescence excited at 345 and 385 nm were analyzed after manipulations that evoked predictable changes in the cytosolic Na+ concentration ([Na+]i). Raising [Na+]i by either gramicidin D or monensin specifically increased the fluorescence excited at 345 nm and decreased that excited at 385 nm. Hence, calculation of changes in the 345/385 nm excitation ratio yields an estimate of actual changes in [Na+]i. A transient activation of Na+/H+ exchange evoked by addition of acidified platelets to buffer, pH 7.4, evoked a transient rise in [Na+]i. The re-establishment of basal [Na+]i could be prevented by ouabain, indicating an involvement of the Na+,K(+)-ATPase. Upon stimulation by 0.5 unit/ml of thrombin, [Na+]i immediately increased by 16 +/- 4 mM and this rise continued for at least 60 min after addition of agonist, albeit at a lower rate. This latter sustained rise could not be curtailed by scavenging thrombin by means of hirudin. Addition of ouabain or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced a comparable slow rise in the 345/385 excitation ratio. This may indicate a protein kinase C-mediated inhibition by thrombin of the Na+,K(+)-ATPase. In the absence of extracellular Ca2+ (Ca2+o), the [Na+]i gain was augmented to 38 +/- 9 mM. This additional uptake of Na+ was prevented by (i) Mn2+ ions, (ii) La3+ ions, (iii) the blocker of receptor-mediated Ca2+ entry (1-[beta[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl]-1H-im ida zole hydrochloride), and (iv) by hirudin which reversed receptor occupancy by thrombin. These findings suggest that the additional thrombin-induced [Na+]i gain in the absence of Ca2+o is due to Na+ influx through a Ca2+ entry pathway. The increase in [Na+]i in the presence of Ca2+o results from Na+ influx via Na+/H+ exchange.  相似文献   

3.
Protons as substitutes for sodium and potassium in the sodium pump reaction   总被引:6,自引:0,他引:6  
The role of protons as substitutes for Na+ and/or K+ in the sodium pump reaction was examined using inside-out membrane vesicles derived from human red cells. Na+-like effects of protons suggested previously (Blostein, R. (1985) J. Biol. Chem. 260, 829-833) were substantiated by the following observations: (i) in the absence of extravesicular (cytoplasmic) Na+, an increase in cytoplasmic [H+] increased both strophanthidin-sensitive ATP hydrolysis (nu) and the steady-state level of phosphoenzyme, EP, and (ii) as [H+] is increased, the Na+/ATP coupling ratio is decreased. K+-like effects of protons were evidenced in the following results: (i) an increase in nu, decrease in EP, and hence increase in EP turnover (nu/EP) occur when intravesicular (extracellular) [H+] is increased; (ii) an increase in the rate of Na+ influx into K+(Rb+)-free inside-out vesicles and (iii) a decrease in Rb+/ATP coupling occur when [H+] is increased. Direct evidence for H+ being translocated in place of cytoplasmic Na+ and extracellular K+ was obtained by monitoring pH changes using fluorescein isothiocyanate-dextran-filled vesicles derived from 4',4-diisothiocyano-2',2-stilbene disulfonate-treated cells. With the initial pHi = pHo = pH 6.2, a strophanthidin-sensitive decrease in pHi was observed following addition of ATP provided the vesicles contained K+. This pH gradient was abolished following addition of Na+. With alkali cation-free inside-out vesicles, a strophanthidin-sensitive increase in pH was observed upon addition of both ATP and Na+. The foregoing changes in pHi were not affected by the addition of tetrabutylammonium to dissipate any membrane potential and were not observed at pH 6.8. These ATP-dependent cardiac glycoside-sensitive proton movements indicate Na,K-ATPase mediated Na+/H+ exchange in the absence of extracellular K+ as well as H+/K+ exchange in the absence of cytoplasmic Na+.  相似文献   

4.
Effects of the K+ concentration in the bathing fluid ([K+]l) on the intracellular K+, Na+ and Cl- concentrations ([K+]i [Na+]i and [Cl-]i) as well as on the electrical potential were studied in rat duodenum. Changes in the mucosal K+ concentration ([K+]m), bringing the sum of Na+ and K+ concentrations to 147.2 mM constant, had little effect on the transmural potential difference (PDt), but did induce marked changes in the mucosal membrane potential (Vm). As [K+]m increased, Vm was depolarized gradually and obeyed the Nernst equation for a potassium electrode in the range of [K+]m greater than approx. 60 mM. Experiments of ion analyses were carried out on strips of duodenum to determine the effect of changing the external K+ concentrations on [K+] i, [Na+]i and [Cl-]i. An increase in [K+]o resulted in increases in [K+]i and [Cl-]i and a decrease in [Na+]i, [K+]i approaching its maximum at [K+]o greater than 70 mM. Such changes in [K+]i and [Na+]i seem to correlate quantitatively with the changes in [K+]o and [Na+]o. The values of the ratio of permeability coefficients, Pna+/PK+ were estimated using the Vm values and intracellular ion concentrations measured in these experiments. The results suggested that there appeared a rather abrupt increase in the PNa+/PK+ ratio from 0 to approx. 0.1, as [K+]m decreased.  相似文献   

5.
Physiological and biochemical studies have suggested that the plant plasma membrane H+-ATPase controls many important aspects of plant physiology, including growth, development, nutrient transport, and stomata movements. We have started the genetic analysis of this enzyme by isolating both genomic and cDNA clones of an H+-ATPase gene from Arabidopsis thaliana. The cloned gene is interrupted by 15 introns, and there is partial conservation of exon boundaries with respect to animal (Na+/K+)- and Ca2+-ATPases. In general, the relationship between exons and the predicted secondary and transmembrane structure of different ATPases with phosphorylated intermediate support a somewhat degenerate correspondence between exons and structural modules. The predicted amino acid sequence of the plant H+-ATPase is more closely related to fungal and protozoan H+-ATPases than to bacterial K+-ATPases or to animal (Na+/K+)-, (H+/K+)-, and Ca2+-ATPases. There is evidence for the existence of at least three isoforms of the plant H+-ATPase gene. These results open the way for a molecular approach to the structure and function of the plant proton pump.  相似文献   

6.
The new fluorescent Na+ indicator sodium-binding benzofuran isophthalate (SBFI) was used for determination of the cytosolic free Na+ concentration, [Na+]i, in human platelets. The dye could be loaded into platelets in the form of its acetoxymethyl ester (SBFI-AM). Calibration of the fluorescence in terms of [Na+]i was done by measuring the 345/385 nm excitation ratio (emission 490 nm) at various extracellular Na+ concentrations, [Na+]o, in the presence of gramicidin D. The 345/385 intensity ratio increased almost linearly when [Na+]i was stepwise raised from 20 to 60 mM. The basal value for [Na+]i was found to be 26.0 +/- 4.5 mM (n = 15). Incubation of platelets in Na(+)-free buffer decreased [Na+]i, whereas inhibition of the (Na+ + K+)-ATPase by 0.5 mM ouabain increased [Na+]i to 56 +/- 4 mM (n = 4) within 60 min. Activation of Na+/H+ exchange by exposing platelets to propionic acid also raised [Na+]i, and a comparable effect was produced by the Na+/H+ ionophore monensin. Activation of platelets with thrombin (0.1-0.5 unit/ml) also increased the 345/385 nm intensity ratio, an effect that was not seen in Na(+)-free buffer or after raising intracellular cAMP by treatment of platelets with prostaglandin E1. On the average, [Na+]i was raised to 59.5 +/- 5.3 mM (n = 15) at 10 min after addition of thrombin without a significant decrease for further 10 min. An increase in [Na+]i was also seen when platelets were challenged with the Ca2+ ionophore ionomycin, an effect that did not occur in the absence of Na+o. Our findings confirm earlier reports which demonstrated a rise in [Na+]i in stimulated platelets and show that SBFI is a useful tool for determination of [Na+]i in resting and stimulated platelets.  相似文献   

7.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

8.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

9.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

10.
Stimulation of pig peripheral blood lymphocytes with concanavalin A (Con A) provoked a rapid increase (two- to threefold) in the rate of ouabain-inhibitable K+ uptake observable within 3-10 min of stimulation with mitogen. At least two phases can be distinguished in the activation of the Na+/K+ pump: the early phase (till 3 h) is characterized by an unaltered number of ouabain binding sites and the later phase (noted at 5 h) by an increased number of such sites. Both K+ efflux and influx increased to the same extent, thereby maintaining [K+]i at the same level as in resting cells (120 mM). Within 3 min of addition of mitogen, the rates of total and amiloride-inhibitable Na+ uptake went up two- and fourfold, respectively, thus resulting in rapid increase in [Na+]i from 20 to about 50 mM. Activation of the Na+/K+ pump was not observed when the cells were stimulated with Con A in low Na+ medium (9 mM), nor did the usual rise in [Na+]i occur. When monensin (30 microM), a Na+/H+ ionophore, was added to resting cells, an increase in both [Na+]i and active K+ uptake occurred in normal medium but not when cells were suspended in low Na+ isotonic buffer. Amiloride (500 microM), on the other hand, prevented both the Con A-induced increase in [Na+]i and the activation of the Na+/K+ pump. Despite complete inhibition of the Na+,K+-ATPase in the presence of ouabain (1 mM), Con A activated the amiloride-inhibitable Na+ uptake in the usual way. In mouse splenocytes stimulated with Con A, there was also a parallel rise in both [Na+]i and active K+ uptake but this took considerably longer to occur than was the case in pig peripheral blood lymphocytes. Increase in both ionic fluxes, the former passive and the latter active, is essential to the entry and maintenance of the cells in proliferative cycle.  相似文献   

11.
Agonist-specific regulation of [Na+]i in pancreatic acinar cells   总被引:1,自引:1,他引:0  
In a companion paper (Zhao, H., and S. Muallem. 1995), we describe the relationship between the major Na+,K+, and Cl- transporters in resting pancreatic acinar cells. The present study evaluated the role of the different transporters in regulating [Na+]i and electrolyte secretion during agonist stimulation. Cell stimulation increased [Na+]i and 86Rb influx in an agonist-specific manner. Ca(2+)-mobilizing agonists, such as carbachol and cholecystokinin, activated Na+ influx by a tetraethylammonium-sensitive channel and the Na+/H+ exchanger to rapidly increase [Na+]i from approximately 11.7 mM to between 34 and 39 mM. As a consequence, the NaK2Cl cotransporter was largely inhibited and the activity of the Na+ pump increased to mediate most of the 86Rb(K+) uptake into the cells. Secretin, which increases cAMP, activated the NaK2Cl cotransporter and the Na+/H+ exchanger to slowly increase [Na+]i from approximately 11.7 mM to an average of 24.6 mM. Accordingly, secretin increased total 86Rb uptake more than the Ca(2+)- mobilizing agonists and the apparent coupling between the NaK2Cl cotransport and the Na+ pump. All the effects of secretin could be attributed to an increase in cAMP, since forskolin affected [Na+]i and 86Rb fluxes similar to secretin. The signaling pathways mediating the effects of the Ca(2+)-mobilizing agonists were less clear. Although an increase in [Ca2+]i was required, it was not sufficient to account for the effect of the agonists. Activation of protein kinase C stimulated the NaK2Cl cotransporter to increase [Na+]i and 86Rb fluxes without preventing the inhibition of the cotransporter by Ca(2+)-mobilizing agonists. The effects of the agonists were not mediated by changes in cell volume, since cell swelling and shrinkage did not reproduce the effect of the agonists on [Na+]i and 86Rb fluxes. The overall findings of the relationships between the various Na+,K+, and Cl- transporters in resting and stimulated pancreatic acinar cells are discussed in terms of possible models of fluid and electrolyte secretion by these cells.  相似文献   

12.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

13.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

14.
Intracellular pH (pHi) of human platelets was measured with the fluorescent dye 2',7'-bis(carboxyethyl)5,6-carboxyfluorescein under various conditions. Stimulation by thrombin at 23 degrees C caused a biphasic change in pHi (initial pHi 7.09); a rapid fall of 0.01-0.04 units (correlated with the rise of [Ca2+]i measured with quin2) followed after 10-15 s by a sustained rise of 0.1-0.15 units pHi. The fall of pHi and [Ca2+]i mobilization was reduced by early (5 s) addition of hirudin, but the later elevated pHi was not reversed by hirudin added after 30 s, although this strips thrombin from receptors and rapidly returns [Ca2+]i to basal levels. In Na+-free medium, or in presence of the Na+/H+ antiport inhibitors, 5-(N,N-dimethyl)amiloride (DMA) or 5-(N-ethyl-N-isopropyl)amiloride (EIPA), thrombin caused a greater fall of pHi (0.22-0.26 units) that was sustained. DMA or EIPA could also reverse the alkalinization response to thrombin. Ca2+ ionophores (ionomycin, A23187) decreased platelet pHi by 0.02-0.15 units, but without an increase of pHi comparable to that following thrombin; DMA and EIPA enhanced the fall of pHi (0.14-0.33 units). Cytoplasmic acidification produced by nigericin (K+/H+ ionophore) was followed by return towards normal that was abolished by Na+/H+ antiport inhibitors. The phorbol diester phorbol 12-myristate 13-acetate had little effect on resting pHi but increased the rate of recovery 2-3-fold after cytoplasmic acidification by nigericin, ionomycin, or sodium propionate. These results indicate that elevation of [Ca2+]i by thrombin enhances H+ production, but the subsequent alkalinization is independent of receptor occupancy or elevated [Ca2+]i and stimulation of the Na+/H+ antiporter by thrombin probably involves some mechanism apart from regulation by H+ and protein kinase C.  相似文献   

15.
The effect of a transmembrane pH gradient on the ouabain, bumetanide, and phloretin resistant H+ efflux was studied in rabbit erythrocytes. Proton equilibration was reduced by the use of DIDS (125 microM) and acetazolamide (1 mM). H+ efflux from acid loaded erythrocytes (pHi = 6.1) was measured in a K+ (145 mM) medium, pH0 = 8.0, in the presence and absence of 60 microM 5,N,N-dimethyl-amiloride (DMA). The H+ efflux rate in a K+-containing medium was 116.38 +/- 4.5 mmol/l cell X hr. Substitution of Nao+ for Ko+ strongly stimulated H+ efflux to 177.89 +/- 7.9 mmol/l cell X hr. The transtimulation of H+ efflux by Nao+ was completely abolished by DMA falling to values not different from controls with an ID50 of about 8.6 X 10(-7) M. The sequence of substrate selectivities for the external transport site were Na greater than greater than greater than Li greater than choline, Cs, K, and Glucamine. The transport system has no specific anion requirement, but is inhibited by NO3-. The DMA sensitive H+ efflux was a saturable function of [Na+]o, with an apparent Km and Vmax of about 14.75 +/- 1.99 mM and 85.37 +/- 7.68 mmol/l cell X hr, respectively. However, the Nao+-dependent and DMA-sensitive H+ efflux was sigmoidally activated by [H+]i, suggesting that Hi+ interacts at both transport and modifier sites. An outwardly directed H+ gradient (pHi 6.1, pH = 8.0) also promoted DMA sensitive Na+ entry (61.2 +/- 3.0 mmol/l cell X hr) which was abolished when pHo was reduced to 6.0. The data is therefore consistent with the presence of a Na+/H+ exchange system in rabbit erythrocytes.  相似文献   

16.
Intracellular Na+, K+, and Mg2+ concentrations have been measured during the HeLa cell cycle and compared with changes in oxygen utilization and macromolecular synthesis. Cell water content remains relatively constant at 79 +/- 1% during the cell cycle. A biphasic change in intracellular Na+ occurs with low values as cells reach peak S phase and again in early G1. The decrease in S coincides with an increase in cell volume during increased macromolecular synthesis. The fall in intracellular Na+ during mitosis/early G1 coincides with decreased energy utilization as macromolecular synthesis decreases with a continued decrease in [Na+]i in G1 corresponding to a period of increasing cell volume and an increase in protein synthesis. Intracellular Na+ is relatively high during late S/G2 when phosphate incorporation into protein and phospholipid is maximal. Intracellular K+ concentrations largely parallel intracellular Na+ levels although the intracellular K+:Na+ ratio is significantly lower as the cell volume increases during late G2/mitosis. Additions of a Na+-pump inhibitor (strophanthidin) not only caused a rise in [Na+]i and fall in [K+]i but also inhibited protein synthesis. Conversely, addition of a protein synthesis inhibitor (cycloheximide) blocked amino acid incorporation and produces a fall in intracellular Na+ levels. These findings indicate that intracellular Na+ and K+ play an important role in regulating cell hydration during the cell cycle and that changes in Na+, K+-ATPase activity, synthesis and/or utilization of high energy phosphate compounds, fluid phase turnover (endocytosis), Na+:H+ exchange (pHi), Donnan forces, and ionic adsorption may all be involved.  相似文献   

17.
Administration of oral contraceptive (OC) has been associated with body fluid retention and in high doses over a long period, promotes hypertension. This present investigation tests the hypothesis that the dietary calcium supplementation increases salt and water excretion in OC (norgestre/ethinylestradiol) treated 32 female albino rats randomly distributed into four (1-4) groups of 8 rats each: Control, OC-treated, OC-treated+ Calcium diet fed and Calcium diet fed only respectively. OC was administered to the appropriate groups by gavage. Experimental diet contained 2.5% calcium supplement. Plasma and urinary [Na+] [K+] were evaluated after 8 weeks of experimentation by flame photometry and plasma [Ca2+] by colorimetric method. OC-treatment induced a significant fall in urinary [Na+]. Water excretion was significantly reduced in these animals (control, 3.1±0.56 Vs OC-treated rats, 1.47±0.16). OC-treated rats had significantly higher plasma [K+] compared to control rats. Calcium supplementation induced increases in plasma [Na+], [K+] and augmented urinary Na+ excretion (OC-treated + Ca2+ diet Vs OC-treated only). Compared with the control rats, high Ca2+ diet fed rats exhibited significant increases in plasma [Na+] and [K+] accompanied by significant decreases in urinary H20 excretion. These results strongly suggest that high dietary Ca2+ supplementation increases salt and water excretion in OC-treated rats and potentially moderates fluid retention and blood pressure in these animals, and may be of clinical significance in OC-induced abnormal fluid retention and perhaps OC-induced hypertension.Keywords: Hypercalcemic-diet, Oral contraceptive, Plasma electrolytes, Hypertension, Female-albino-rats.  相似文献   

18.
The voltage dependence of steady state current produced by the forward mode of operation of the endogenous electrogenic Na+/K+ pump in Na(+)- loaded Xenopus oocytes has been examined using a two-microelectrode voltage clamp technique. Four experimental cases (in a total of 18 different experimental conditions) were explored: variation of external [Na+] ([Na]o) at saturating (10 mM) external [K+] ([K]o), and activation of pump current by various [K]o at 0, 15, and 120 mM [Na]o (tetramethylammonium replacement). Ionic current through K+ channels was blocked by Ba2+ (5 mM) and tetraethylammonium (20 mM), thereby allowing pump-mediated current to be measured by addition or removal of external K+. Control measurements and corrections were made for pump current run-down and holding current drift. Additional controls were done to estimate the magnitude of the inwardly directed pump-mediated current that was present in K(+)-free solution and the residual K(+)- channel current. A pseudo two-state access channel model is described in the Appendix in which only the pseudo first-order rate coefficients for binding of external Na+ and K+ are assumed to be voltage dependent and all transitions between states in the Na+/K+ pump cycle are assumed to be voltage independent. Any three-state or higher order model with only two oppositely directed voltage-dependent rate coefficients can be reduced to an equivalent pseudo two-state model. The steady state current-voltage (I-V) equations derived from the model for each case were simultaneously fit to the I-V data for all four experimental cases and yielded least-squares estimates of the model parameters. The apparent fractional depth of the external access channel for Na+ is 0.486 +/- 0.010; for K+ it is 0.256 +/- 0.009. The Hill coefficient for Na+ is 2.18 +/- 0.06, and the Hill coefficient for K+ (which is dependent on [Na]o) ranges from 0.581 +/- 0.019 to 1.35 +/- 0.034 for 0 and 120 mM [Na]o, respectively. The model provides a reasonable fit to the data and supports the hypothesis that under conditions of saturating internal [Na+], the principal voltage dependence of the Na+/K+ pump cycle is a consequence of the existence of an external high- field access channel in the pump molecule through which Na+ and K+ ions must pass in order to reach their binding sites.  相似文献   

19.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.  相似文献   

20.
The activation of a wide range of cellular receptors has been detected previously using a novel instrument, the microphysiometer. In this study microphysiometry was used to monitor the basal and cholinergic-stimulated activity of the Na+/K+ adenosine triphosphatase (ATPase) (the Na+/K+ pump) in the human rhabdomyosarcoma cell line TE671. Manipulations of Na+/K+ ATPase activity with ouabain or removal of extracellular K+ revealed that this ion pump was responsible for 8.8 +/- 0.7% of the total cellular energy utilization by those cells as monitored by the production of acid metabolites. Activation of the pump after a period of inhibition transiently increased the acidification rate above baseline, corresponding to increases in intracellular [Na+] ([Na+]i) occurring while the pump was off. The amplitude of this transient was a function of the total [Na+]i excursion in the absence of pump activity, which in turn depended on the duration of pump inhibition and the Na+ influx rate. Manipulations of the mode of energy metabolism in these cells by changes of the carbon substrate and use of metabolic inhibitors revealed that, unlike some other cells studied, the Na+/K+ ATPase in TE671 cells does not depend on any one mode of metabolism for its adenosine triphosphate source. Stimulation of cholinergic receptors in these cells with carbachol activated the Na+/K+ ATPase via an increase in [Na+]i rather than a direct activation of the ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号