首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tenascin-C (TN-C) is a multimodular glycoprotein of the extracellular matrix which is important for the development of the nervous system and has a range of different functions which are mediated by the different protein domains present. TN-C contains eight constitutive fibronectin type III (FNIII) domains and a region of alternatively spliced FNIII domains. In the mouse and chick, six of these domains have been described and characterized, whereas in human there are nine of them. In this report, we show that seven alternatively spliced FNIII domains exist in rat and describe the differential expression pattern of the additional domain AD1 during embryonic and postnatal rat brain development. The AD1 domain of rat is homologous to the ones described in human and chick proteins but does not exist in mouse. Its expression can be located to the developing rat hippocampus and the lining of the lateral ventricle, regions where the TN-C protein may affect the behavior of stem and progenitor cells. During hippocampal development AD1 and the other alternatively spliced domains are differentially expressed as shown by RT-PCRs, immunocytochemistry and in situ hybridizations.  相似文献   

2.
3.
Extracellular matrix (ECM) molecules constitute a "niche" that modulates the migration, proliferation, and differentiation of neural stem/progenitor cells (NSPCs). The glycoprotein Tenascin-R (TN-R) is an ECM molecule, comprising multiple domains. Either the whole TN-R molecule or its distinct domains has been demonstrated to play a very important role in the developing central nervous system. However, little is known about the effect of the TN-R domain on NSPCs, especially NSPC migration. In the present study, we first show that both TN-R domains epidermal growth factor-like repeat (EGFL) and fibronectin type III (FN)6-8 can inhibit the NSPCs migration from neurospheres in vitro. Furthermore, both the EGFL and FN6-8 domains affect the distribution of neurons generated from neurospheres, indicating that EGFL and FN6-8 domains inhibit the motility of neurons generated from neurospheres. These results suggest that TN-R has an inhibitory effect on NSPCs migration.  相似文献   

4.
Tenascin Mr 220,000 isoform expression correlates with corneal cell migration.   总被引:10,自引:0,他引:10  
The three isoforms of chicken tenascin, an extracellular matrix glycoprotein, are generated by alternatively spliced fibronectin type III domains. The resulting proteins migrate as bands of Mr 220,000 (ten220), Mr 200,000 (ten200) and Mr 190,000 (ten190) on SDS-PAGE. We describe here two monoclonal antibodies, one specific for ten220 (mAb T17) and another that recognizes all isoforms (mAb T16). These were used to examine the differential expression of isoforms during development. Most impressive is the close correlation between ten220 expression and cell migration in the embryonic cornea. Initially (stage 18), ten190/200 can be detected within the corneal epithelium and along the basement membranes of the lens and sclera. Ten220 appears within the primary stroma immediately prior to the invasion by neural-crest-derived cells. This expression is maintained during the subsequent migration of fibroblasts from the conjunctiva into the primary stroma. With the completion of migration and the marked increase in matrix synthesis by corneal fibroblasts, ten220 disappears. Ten190/200 remains in the region adjoining the endothelium, the Bowman's membrane and the adjacent stroma. The cell-migration-associated isoform is isolated from extracts of embryonic tissues as a homohexamer. Low molecular weight forms appeared absent but a new tenascin band of Mr 210,000 could be detected in brain extracts which may be a new isoform. We conclude that the synthesis of tenascin isoforms is under tight developmental control and speculate that a function of the additional domains is to facilitate cell migration.  相似文献   

5.
6.
7.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

8.
9.
Many steps of peripheral glia development appear to be regulated by neuregulin1 (NRG1) signaling but the exact roles of the different NRG1 isoforms in these processes remain to be determined. While glial growth factor 2 (GGF2), a NRG1 type II isoform, is able to induce a satellite glial fate in neural crest stem cells, targeted mutations in mice have revealed a prominent role of NRG1 type III isoforms in supporting survival of Schwann cells at early developmental stages. Here, we investigated the role of NRG1 isoforms in the differentiation of Schwann cells from neural crest-derived progenitor cells. In multipotent cells isolated from dorsal root ganglia, soluble NRG1 isoforms do not promote Schwann cell features, whereas signaling by membrane-associated NRG1 type III induces the expression of the Schwann cell markers Oct-6/SCIP and S100 in neighboring cells, independent of survival. Thus, axon-bound NRG1 might actively promote both Schwann cell survival and differentiation.  相似文献   

10.
11.
12.
13.
The neuronal cell adhesion molecule Bravo/Nr-CAM is a cell surface protein of the immunoglobulin (Ig) superfamily and is closely related to the L1/NgCAM and neurofascin molecules, all of which contain six immunoglobulin domains, five fibronectin repeats, a transmembrane region, and an intracellular domain. Chicken Bravo/Nr-CAM has been shown to interact with other cell surface molecules of the Ig superfamily and has been implicated in specific pathfinding roles of axonal growth cones in the developing nervous system. We now report the characterization of cDNA clones encoding the human Bravo/Nr-CAM protein, which, like its chicken homolog, is composed of six V-like Ig domains and five fibronectin type III repeats. The human Bravo/Nr-CAM homolog also contains a transmembrane and intracellular domain, both of which are 100% conserved at the amino acid level compared to its chicken homolog. Overall, the human Bravo/Nr-CAM homolog is 82% identical to the chicken Bravo/Nr-CAM amino acid sequence. Independent cDNAs encoding four different isoforms were also identified, all of which contain alternatively spliced variants around the fifth fibronectin type III repeat, including one isoform that had been previously identified for chicken Bravo/Nr-CAM. Northern blot analysis reveals one mRNA species of approximately 7.0 kb in adult human brain tissue. Fluorescencein situhybridization maps the gene for human Bravo/Nr-CAM to human chromosome 7q31.1–q31.2. This chromosomal locus has been previously identified as containing a tumor suppressor candidate gene commonly deleted in certain human cancer tissues.  相似文献   

14.
15.
RIC-3 is a transmembrane protein which enhances maturation (folding and assembly) of neuronal nicotinic acetylcholine receptors (nAChRs). In this study, we report the cloning and characterisation of 11 alternatively spliced isoforms of Drosophila melanogaster RIC-3 (DmRIC-3). Heterologous expression studies of alternatively spliced DmRIC-3 isoforms demonstrate that nAChR chaperone activity does not require a predicted coiled-coil domain which is located entirely within exon 7. In contrast, isoforms containing an additional exon (exon 2), which is located within a proline-rich N-terminal region, have a greatly reduced ability to enhance nAChR maturation. The ability of DmRIC-3 to influence nAChR maturation was examined in co-expression studies with human α7 nAChRs and with hybrid nAChRs containing both Drosophila and rat nAChR subunits. When expressed in a Drosophila cell line, several of the DmRIC-3 splice variants enhanced nAChR maturation to a significantly greater extent than observed with human RIC-3. In contrast, when expressed in a human cell line, human RIC-3 enhanced nAChR maturation more efficiently than DmRIC-3. The cloning and characterisation of 11 alternatively spliced DmRIC-3 isoforms has helped to identify domains influencing RIC-3 chaperone activity. In addition, studies conducted in different expression systems suggest that additional host cell factors may modulate the chaperone activity of RIC-3.  相似文献   

16.
Adhesive interactions between neurons and extracellular matrix (ECM) play a key role in neuronal pattern formation. The prominent role played by the extracellular matrix protein tenascin/cytotactin in the development of the nervous system, tied to its abundance, led us to speculate that brain may contain yet unidentified tenascin receptors. Here we show that the neuronal cell adhesion molecule contactin/F11, a member of the immunoglobulin(Ig)-superfamily, is a cell surface ligand for tenascin in the nervous system. Through affinity chromatography of membrane glycoproteins from chick brain on tenascin-Sepharose, we isolated a major cell surface ligand of 135 kD which we identified as contactin/F11 by NH2-terminal sequencing. The binding specificity between contactin/F11 and tenascin was demonstrated in solid-phase assays. Binding of immunopurified 125I-labeled contactin/F11 to immobilized tenascin is completely inhibited by the addition of soluble tenascin or contactin/F11, but not by fibronectin. When the fractionated isoforms of tenascin were used as substrates, contactin/F11 bound preferentially to the 190-kD isoform. This isoform differs in having no alternatively spliced fibronectin type III domains. Our results imply that the introduction of these additional domains in some way disrupts the contactin/F11 binding site on tenascin. To localize the binding site on contactin/F11, proteolytic fragments were generated and characterized by NH2-terminal sequencing. The smallest contactin/F11 fragment which binds tenascin is 45 kD and also begins with the contactin/F11 NH2-terminal sequence. This implies that contactin/F11 binds to tenascin through a site within the first three Ig-domains.  相似文献   

17.
18.
The C-terminal regions of the four human plasma membrane Ca2+ pump isoforms 1a-d generated from alternatively spliced RNA have been expressed in Escherichia coli, and the recombinant proteins have been purified to a very high degree. The C-termini of isoforms 1a, 1c, and 1d contain an insert encoded by an alternatively spliced exon which is homologous to the calmodulin binding domain of isoform 1b. In isoforms 1c and 1d (29 and 38 amino acid insertions, respectively), subdomain A of the original calmodulin binding site of isoform 1b is followed by the spliced-in domain, which is then followed by subdomain B of the original calmodulin binding site. The positive charges of histidine residues at positions 27, 28, and 38 of the alternatively spliced sequence are likely to be responsible for the observed pH-dependent calmodulin binding to the novel "duplicated" binding site. The affinity of calmodulin for the C-terminal domains of isoforms 1a, 1c, and 1d, which contain the histidine-rich inserts, is much higher at pH 5.9 than at pH 7.2. A synthetic peptide (I31) containing 31 amino acids of the alternatively spliced sequence (from residue 9 to 40) also binds calmodulin with strong pH dependency. Alternative splicing in the C-terminal domain is proposed to confer pH dependence to the regulation of the activity of Ca2+ pump isoforms.  相似文献   

19.
Pax基因功能及其选择性剪接的研究进展   总被引:2,自引:0,他引:2  
王秀  王蔚  王义权 《生命科学》2008,20(1):125-130
Pax基因家族编码的蛋白是一组极为重要的转录调控因子,在胚胎发育的器官形成中扮演重要角色,其主要功能包括:调控细胞增殖、促进细胞自我更新、诱导前体细胞定向转移以及改变特异细胞系的分化方向。目前已知,Pax基因的非正常表达是多种先天性疾病的主要诱因。Pax基因的选择性剪接体通常具有一定的空间特异性,每种剪接体都有其主要作用的靶位和信号通路。文章简述了Pax基因的相关背景知识,详细介绍Paxl—Pax9调控在胚胎组织发育中的各项功能,并列举了现已确定的Pax基因在不同物种中的选择性剪接产物。  相似文献   

20.
In mammalian cells, 8-oxoguanine DNA glycosylase-1 (OGG1) is the main DNA glycosylase for the removal of 8-oxoguanine (8-oxoG). 8-oxoG, one of the most common products of the oxidative attack of DNA, is a premutagenic lesion that accumulates spontaneously at high frequencies in the genome. In this study, Ogg1 mRNA expression was detected throughout embryonic development in mice. In situ hybridization showed that in the neonatal brain, Ogg1 expression was detected in a distinct layer of cells in the medial wall of the lateral ventricle, which may correspond to ependymal cells, and in some scattered cells in the subventricular zone (SVZ), a brain region rich in neural stem/progenitor cells. Using neurospheres as a model for the study of neural stem/progenitor cells, we found that both the expression and activity of Ogg1 were high in neurospheres derived from newborn mice and decreased in adults and upon induction of cell differentiation. Furthermore, Ogg1 was shown to be the major DNA glycosylase initiating 8-oxoG repair in neurospheres. Our results strongly indicate that enhanced DNA repair capacity is an important mechanism by which neural stem/progenitor cells maintain their genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号