首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
摘要: 文中建立了一种新型的寡核苷酸芯片, 用于线粒体脑肌病伴高乳酸血症和卒中样发作(Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes, MELAS)和肌阵挛性癫痫伴发不规整红纤维(Myoclonic epilepsy with ragged red fibers, MERRF)线粒体DNA所有已知突变位点的集成检测。将31对allele位点特异性的寡核苷酸探针包被在醛基修饰的载玻片表面, 以多重不对称PCR方法制备Cy5荧光标记靶基因。利用此芯片对5例MELAS患者、5例MERRF患者及20例健康对照进行筛查, 结果发现, MELAS患者均为MT-T1基因A3243G突变; 在MERRF患者组, MT-TK基因A8344G突变4例, T8356C突变1例; 健康对照组均未发现31种相关mtDNA突变。芯片检测与DNA测序结果完全一致。结果表明, 这种寡核苷酸芯片可以对MELAS和MERRF综合征已知突变位点进行同步快速检测, 具有较高的灵敏度和特异性。这一模式的基因芯片经过适当改装后也可用于其他人类线粒体疾病的基因诊断。  相似文献   

3.
A review of recent data concerning the apoptotic death of cells during senescence at the organismic level. The data analyzed suggest interrelations between apoptosis deregulation and some age-related pathologies and senescent phenotypes. Genetic aspects and possible mechanisms of age-related changes in the program of apoptosis are considered. It has been proposed that age-related deregulation of apoptosis is a mechanism of senescence.  相似文献   

4.
Role of osmoregulation in the actions of taurine   总被引:7,自引:0,他引:7  
Schaffer S  Takahashi K  Azuma J 《Amino acids》2000,19(3-4):527-546
Summary. Taurine regulates an unusual number of biological phenomena, including heart rhythm, contractile function, blood pressure, platelet aggregation, neuronal excitability, body temperature, learning, motor behavior, food consumption, eye sight, sperm motility, cell proliferation and viability, energy metabolism and bile acid synthesis. Many of these actions are associated with alterations in either ion transport or protein phosphorylation. Although the effects on ion transport have been attributed to changes in membrane structure, they could be equally affected by a change in the activity of the affected transporters. Three common ways of altering transporter activity is enhanced expression, changes in the phosphorylation status of the protein and cytoskeletal changes. Interestingly, all three events are altered by osmotic stress. Since taurine is a key organic osmolyte in most cells, the possibility that the effects of taurine on ion transport could be related to its osmoregulatory activity was considered. This was accomplished by comparing the effects of taurine, cell swelling and cell shrinkage on the activities of key ion channels and ion transporters. The review also compares the phosphorylation cascades initiated by osmotic stress with some of the phosphorylation events triggered by taurine depletion or treatment. The data reveal that certain actions of taurine are probably caused by the activation of osmotic-linked signaling pathways. Nonetheless, some of the actions of taurine are unique and appear to be correlated with its membrane modulating and phosphorylation regulating activities. Received January 25, 2000/Accepted January 31, 2000  相似文献   

5.
Taurine demonstrates multiple cellular functions including a central role as a neurotransmitter, as a trophic factor in CNS development, in maintaining the structural integrity of the membrane, in regulating calcium transport and homeostasis, as an osmolyte, as a neuromodulator and as a neuroprotectant. The neurotransmitter properties of taurine are illustrated by its ability to elicit neuronal hyperpolarization, the presence of specific taurine synthesizing enzyme and receptors in the CNS and the presence of a taurine transporter system. Taurine exerts its neuroprotective functions against the glutamate induced excitotoxicity by reducing the glutamate-induced increase of intracellular calcium level, by shifting the ratio of Bcl-2 and Bad ratio in favor of cell survival and by reducing the ER stress. The presence of metabotropic taurine receptors which are negatively coupled to phospholipase C (PLC) signaling pathway through inhibitory G proteins is proposed, and the evidence supporting this notion is also presented.  相似文献   

6.
Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.  相似文献   

7.
Role of taurine on acid secretion in the rat stomach   总被引:1,自引:0,他引:1  

Background  

Taurine has chemical structure similar to an inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Previous studies on GABA in the stomach suggest GABAergic neuron is involved in acid secretion, but the effects of taurine are poor understood.  相似文献   

8.
Acetaminophen overdose causes acute liver injury in both humans and animals. This study was designed to investigate the potential role of the conditionally essential amino acid taurine in preventing acetaminophen-induced hepatotoxicity. Male Sprague-Dawley rats were administered acetaminophen (800 mg/kg) intraperitoneally. Taurine (200 mg/kg) was given 12 h before, at the time of, and 1 or 2 h after acetaminophen injection. Acetaminophen treatment increased the plasma levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase and caused hepatic DNA fragmentation and hepatocyte necrosis. Taurine administered before, simultaneously with, or 1 h after acetaminophen resulted in significant improvement in hepatic injury as represented by decrease of hepatocellular enzyme release and attenuation of hepatocyte apoptosis and necrosis, and this correlated with taurine-mediated attenuation of hepatic lipid peroxidation. These results indicate that taurine possesses prophylactic and therapeutic effects in acetaminophen-induced hepatic injury.  相似文献   

9.
The decreased microsomal Ca++Mg++ATPase activity and lowered level of Ca++ binding by the brain cortex microsomes in seizure prone rats as compared with normal animals have been revealed. Taurine increases these parameters in experiments in vitro. Injection of taurine into the penicillin-provoked epileptogenic focus prevents the seizure reaction in rabbits. This effect is not observed after injection of taurine together with EGTA. The data obtained demonstrate the important role of calcium ions in the anticonvulsant action of taurine.  相似文献   

10.
Decreased activity of the mitochondrial thiamin-dependent 2-oxoglutarate dehydrogenase complex (OGDHC) is associated with a number of inborn and acquired neuropathologies. We hypothesized that perturbation in flux through the complex influences brain development and function, in particular, because the OGDHC reaction is linked to the synthesis/degradation of neurotransmitters glutamate and GABA. Developmental impact of this metabolic knot was studied by characterizing the brain OGDHC activity in offspring of rats exposed to acute hypobaric hypoxia at a critical organogenesis period of pregnancy. In this model, we detected the hypoxia-induced changes in the brain OGDHC activity and in certain physiologic and morphometric parameters. The changes were mostly abrogated by application of specific effector of cellular OGDHC, the phosphonate analog of 2-oxoglutarate (succinyl phosphonate), shortly before hypoxia. The glutamate excitotoxicity known to greatly contribute to hypoxic damage was alleviated by succinyl phosphonate in situ. That is, the delayed calcium deregulation, mitochondrial depolarization and reactive oxygen species (ROS) production became less pronounced in cultivated neurons loaded with succinyl phosphonate. In vitro, succinyl phosphonate protected OGDHC from the catalysis-induced inactivation. Thus, the protective effects of the phosphonate upon hypoxic insult in vivo may result from the preservation of mitochondrial function and Ca2+ homeostasis due to the phosphonate inhibition of both the OGDHC-dependent ROS production and associated OGDHC inactivation. As a result, we showed for the first time that the hypoxia- and glutamate-induced cerebral damage is linked to the function of OGDHC, introducing the phosphonate analogs of 2-oxoglutarate as promising diagnostic tools to reveal the role of OGDHC in brain function and development.  相似文献   

11.
Li E  Hristova K 《Biochemistry》2006,45(20):6241-6251
Receptor tyrosine kinases (RTKs) conduct biochemical signals via lateral dimerization in the plasma membrane, and their transmembrane (TM) domains play an important role in the dimerization process. Here we present two models of RTK-mediated signaling, and we discuss the role of the TM domains within the framework of these two models. We summarize findings of single-amino acid mutations in RTK TM domains that induce unregulated signaling and, as a consequence, pathological phenotypes. We review the current knowledge of pathology induction mechanisms due to these mutations, focusing on the structural and thermodynamic basis of pathogenic dimer stabilization.  相似文献   

12.
There is presented review of recent publications providing current understanding of role of creatine kinase-creatine phosphate system and creatine, substrate of creatine kinase, in metabolism of cell and specifically of cells of the central nervous system. Particularly noted are the protector role of creatine at mitochondrial and bioenergetic cell dysfunction and potential significance of creatine bioadditions at treatment of neurodegenerative and other diseases.  相似文献   

13.
Summary All cells including neurons and glial cells are able to keep their volume within a very limited range. The volume regulatory mechanism involves changes in the concentration of osmolytes of which taurine appears to be of particular importance in brain cells. Swelling in brain cells may occur as a result of depolarization or small fluctuations in osmolarity. In isolated brain cells these conditions will always lead to a release of taurine, the time course of which is superimposable on that of the volume regulatory decrease which follows the initial cell swelling. The mechanism responsible for taurine release associated with swelling has not been fully elucidated but a large body of evidence seems to exclude participation of the taurme high affinity carrier. Using a number of inhibitors of anion exchangers it has been demonstrated that both volume regulation and taurine release in brain cells are inhibited by these drugs, implicating an anion channel in the process. It has be controversial issue as to whether or not taurine release is Ca++ dependent. Recent evidence appears to suggest that the release process is not associated with Ca++ or Ca++ channels. It is, however, quite possible that the swelling process may involve the Ca++ calmodulin system or other second messengers. Taurine also contributes to volume regulation after shrinkage of brain cells, in this case by increasing its intracellular concentration. This change is accomplished byan upregulation of the Na+/taurine cotransporter, together with reduced passive fluxes and increased endogenous synthesis.  相似文献   

14.
Summary. Taurine has several biological processes such as hypoglycemic action, antioxidation, detoxification, etc. To assess the effect of taurine administration on the guinea pigs with hyperglycemia, blood glucose, C-peptide levels together with morphologic alterations in the pancreatic ultrastructure were investigated in terms of hypoglycemic action and malondialdehyde and total sulfhydryl group levels with regard to oxidation-antioxidation relation. Animals were divided into four groups of six. Glucose supplementation group was administrated a single dose of glucose (400mg/kg, i.p.) injection. Glucose and taurine supplementation group was administrated glucose treatment (a single dose, 400mg/kg, i.p.) following taurine (a single dose, 200mg/kg, i.p.). Taurine and glucose supplementation group was administered taurine treatment (a single dose, 200mg/kg, i.p.) following glucose treatment (a single dose, 400mg/kg, i.p.). Control animals received no treatment. Blood samples were collected at the end of the experiments for the determination of glucose, C-peptide (indicator of insulin secretion), lipid peroxidation (thiobarbituric acid reactive substances), and total sulfhydryl groups levels. Pancreatic tissue samples were then collected and processed for transmission electron microscopy. The findings showed that glucose supplementation following taurine administration significantly decreased blood glucose level by increasing C-peptide level and the pancreatic secretion stimulated morphologically and insignificantly changed thiobarbituric acid reactive substances and total sulfhydryl group levels. These observations suggest that taurine administration may be useful in hyperglycemia because of its hypoglycemic and protective effects.  相似文献   

15.
Shimizu M  Satsu H 《Amino acids》2000,19(3-4):605-614
Summary. Taurine transport in human intestinal epithelial Caco-2 cells was down-regulated by culturing the cells in taurine-containing media and was up-regulated in a taurine-free medium. This adaptive regulation was associated with changes in both the Vmax and Km values of taurine transport. A change in the mRNA level of the taurine transporter (TAUT) in this regulation was also observed. The presence of such a regulatory mechanism for maintaining the intracellular taurine content at a certain level suggests that taurine plays an important role in the intestinal cell functions. The intracellular taurine content was increased when Caco-2 cells were exposed to a hypertonic stress. TAUT was up-regulated via the increased expression of TAUT mRNA in the hypertonic cells, suggesting that taurine serves as an osmolyte and protects the cells from osmotic stress. Similar up-regulation of TAUT was observed in the small intestine of water-deprived rats. Received January 25, 2000/Accepted January 31, 2000  相似文献   

16.

Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.

  相似文献   

17.
Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.  相似文献   

18.
We investigated the endothelial function in MELAS patients and also evaluated the therapeutic effects of L-arginine. Concentrations of L-arginine during the acute phase of MELAS were significantly lower than in control subjects. L-arginine infusions significantly improved all symptoms suggesting stroke within 30 min, and oral administration significantly decreased frequency and severity of stroke-like episodes. Flow-mediated dilation (FMD) in patients showed a significant decrease than those in the controls. Two years of oral supplementation of L-arginine significantly improved endothelial function to the control levels and was harmonized with the normalized plasma levels of L-arginine in patients. L-arginine therapy showed promise in treating stroke-like episodes in MELAS.  相似文献   

19.
Summary In a variety of mammalian species it has been established that taurine is a necessary component of the visual system, however, the exact mechanism(s) as to the function of taurine is(are) elusive. Additionally, taurine is speculated to be a membrane stabilizer by interacting with phospholipids and a regulator of protein phosphorylation. Therefore the inhibition by taurine and taurine analogues of the phosphorylation of an 20 kDa protein present in the mitochondrial fraction of the rat retina has been investigated using computational methods. Correlations between molecular weight, molecular volume, and calculated pKa values vs. IC50 values are reported. These data appear to support the hypotheses according to Lombardini and Props that the inhibition of the phosphorylation of an 20kDa protein by taurine and taurine analogues is dependent on (i) the critical distance between the nitrogen and sulfur atoms in the taurine moiety (S-C-C-N) of the analogue; (ii) the environment of the nitrogen atom in the taurine analogue (saturated ring vs. unsaturated ring); and (iii) the placement of both the sulfur and nitrogen atoms not being present simultaneously in the ring structure. Using computational methods we present results that support hypotheses (i) and (ii).  相似文献   

20.
Summary. To evaluate the protective effects of taurine supplementation on exercise-induced oxidative stress and exercise performance, eleven men aged 18–20 years were selected to participate in two identical bicycle ergometer exercises until exhaustion. Single cell gel assay (SCG assay) was used to study DNA damage in white blood cells (WBC). Pre-supplementation of taurine, a significant negative correlation was found between plasma taurine concentration before exercise and plasma thiobaribituric-acid reactive substance (TBARS) 6hr after exercise (r=–0.642, p<0.05). WBC showed a significant increase in DNA strand breakage 6hr and 24hr after exercise. Seven-day taurine supplementation reduced serum TBARS before exercise (p<0.05) and resulted in a significantly reduced DNA migration 24hr after exercise (p<0.01). Significant increases were also found in VO2max, exercise time to exhaustion and maximal workload in test with taurine supplementation (p<0.05). After supplementation, the change in taurine concentration showed positive correlations with the changes in exercise time to exhaustion and maximal workload. The results suggest that taurine may attenuate exercise-induced DNA damage and enhance the capacity of exercise due to its cellular protective properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号