首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Glutamate receptors and transporters, including T1R1 and T1R3 (taste receptor 1, subtypes 1 and 3), mGluRs (metabotropic glutamate receptors), EAAC-1 (excitatory amino acid carrier-1), GLAST-1 (glutamate-aspartate transporter-1), and GLT-1 (glutamate transporter-1), are expressed in the gastrointestinal tract. This study determined effects of oral administration of monosodium glutamate [MSG; 0, 0.06, 0.5, or 1 g/kg body weight (BW)/day] for 21 days on expression of glutamate receptors and transporters in the stomach and jejunum of sow-reared piglets. Both mRNA and protein levels for gastric T1R1, T1R3, mGluR1, mGluR4, EAAT1, EAAT2, EAAT3, and EAAT4 and mRNA levels for jejunal T1R1, T1R3, EAAT1, EAAT2, EAAT3 and EAAT4 were increased (P < 0.05) by MSG supplementation. Among all groups, mRNA levels for gastric EAAT1, EAAT2, EAAT3, and EAAT4 were highest (P < 0.05) in piglets receiving 1 g MSG/kg BW/day. EAAT1 and EAAT2 mRNA levels in the stomach and jejunum of piglets receiving 0.5 g MSG/kg BW/day, as well as jejunal EAAT3 and EAAT4 mRNA levels in piglets receiving 1 g MSG/kg BW/day, were higher (P < 0.05) than those in the control and in piglets receiving 0.06 g MSG/kg BW/day. Furthermore, protein levels for jejunal T1R1 and EAAT3 were higher (P < 0.05) in piglets receiving 1 g MSG/kg BW/day than those in the control and in piglets receiving 0.06 g MSG/kg BW/day. Collectively, these findings indicate that dietary MSG may beneficially stimulate glutamate signaling and sensing in the stomach and jejunum of young pigs, as well as their gastrointestinal function.  相似文献   

2.
3.
Today probiotics have been suggested as a treatment for the prevention of NAFLD. Omega-3 fatty acid supplementation may have beneficial effects in regulating hepatic lipid metabolism, adipose tissue function and inflammation. The present study was designed to determine whether probiotics plus omega-3 are superior to probiotics alone on the monosodium glutamate (MSG)-induced NAFLD model in rats. We included 60 rats divided into four groups, 15 animals in each. Rats of group I were intact. Newborn rats of groups II–IV were injected with MSG. The III (Symbiter) group received 2.5 ml/kg of multiprobiotic “Symbiter” containing concentrated biomass of 14 probiotic bacteria genera. The IV (Symbiter-Omega) groups received “Symbiter-Omega” combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1–5 %). In both interventional groups reduction in total NAS score was observed. Supplementation of alive probiotic mixture with omega-3 fatty acids lead to 20 % higher decrease in steatosis score (0.73 ± 0.11 vs 0.93 ± 0.22, p = 0.848) and reduction by 16.6 % of triglycerides content in liver as compared to probiotic alone. Our study demonstrated more pronounced reduction in hepatic steatosis and hepatic lipid accumulation after treatment with combination of alive probiotics and omega-3 as compared to probiotics alone.  相似文献   

4.
The hepatoprotective effect of onion and garlic extracts on cadmium (Cd)-induced oxidative damage in rats is reported. Control group received double-distilled water alone. Cd group was challenged with 3CdSO4·8H2O (as Cd; 1.5 mg/kg bw per day per oral) alone, while extract-treated groups were pretreated with varied doses of onion and/or garlic extract (0.5 and 1.0 ml/100 g bw per day per oral) for a week and thereafter co-treated with Cd (1.5 mg/kg bw per day per oral) for 3 weeks. Cd caused a marked (p?<?0.001) increase in the levels of lipid peroxidation and glutathione S-transferase, whereas glutathione, superoxide dismutase, and catalase levels were decreased in the liver. We also observed a decrease in hepatic activities of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase and a concomitant increase in the plasma activities of ALT and AST. Onion and garlic extracts significantly attenuated these adverse effects of Cd. Onion extract proffered a dose-dependent hepatoprotection. Our study showed that Cd-induced oxidative damage in rat liver is amenable to attenuation by high dose of onion and moderate dose of garlic extracts possibly via reduced lipid peroxidation and enhanced antioxidant defense system that is insufficient to prevent and protect Cd-induced hepatotoxicity.  相似文献   

5.
Dietary intake of glutamate by postweaning pigs is markedly reduced due to low feed consumption. This study was conducted to determine the safety and efficacy of dietary supplementation with monosodium glutamate (MSG) in postweaning pigs. Piglets were weaned at 21 days of age to a corn and soybean meal-based diet supplemented with 0, 0.5, 1, 2, and 4 % MSG (n = 25/group). MSG was added to the basal diet at the expense of cornstarch. At 42 days of age (21 days after weaning), blood samples (10 mL) were obtained from the jugular vein of 25 pigs/group at 1 and 4 h after feeding for hematological and clinical chemistry tests; thereafter, pigs (n = 6/group) were euthanized to obtain tissues for histopathological examinations. Feed intake was not affected by dietary supplementation with 0–2 % MSG and was 15 % lower in pigs supplemented with 4 % MSG compared with the 0 % MSG group. Compared with the control, dietary supplementation with 1, 2 and 4 % MSG dose-dependently increased plasma concentrations of glutamate, glutamine, and other amino acids (including lysine, methionine, phenylalanine and leucine), daily weight gain, and feed efficiency in postweaning pigs. At day 7 postweaning, dietary supplementation with 1–4 % MSG also increased jejunal villus height, DNA content, and antioxidative capacity. The MSG supplementation dose-dependently reduced the incidence of diarrhea during the first week after weaning. All variables in standard hematology and clinical chemistry tests, as well as gross and microscopic structures, did not differ among the five groups of pigs. These results indicate that dietary supplementation with up to 4 % MSG is safe and improves growth performance in postweaning pigs.  相似文献   

6.
We analyzed the effects of acute and chronic oral administration of monosodium l-glutamate (MSG) on serum iron (Fe) levels and total iron-binding capacity (TIBC) in piglets. In the first experiment, 12 piglets were randomly assigned to two groups: one fed a standard diet (SD) and the other fed an SD containing MSG (10 g/kg). On day 30, serum, liver, kidney, and spleen samples were collected to determine the Fe levels. In the second experiment, six pigs were surgically fitted with a catheter in the jugular artery and vein to investigate the dynamic changes of serum Fe and TIBC. Blood samples were taken from each pig via the catheter every 30 min, for a period of 4 h. The results show that MSG increases Fe levels in the spleen (P?<?0.05) and in serum obtained from the jugular artery (P?<?0.01). In addition, TIBC in serum obtained from the jugular artery demonstrated an increasing trend in pigs fed the MSG diet; however, this trend was not observed in the jugular vein. In conclusion, MSG increases Fe retention by enhancing TIBC in serum.  相似文献   

7.
Docosahexaenoic acid (DHA) percentage in total fatty acids (TFAs) is an important index in DHA microbial production. In this study, the change of DHA percentage in response to fermentation stages and the strategies to increase DHA percentage were investigated. Two kinds of conventional nitrogen sources, monosodium glutamate (MSG) and ammonium sulfate (AS), were tested to regulate DHA synthesis. Results showed that MSG addition could accelerate the substrate consumption rate but inhibit lipid accumulation, while AS addition could increase DHA percentage in TFAs effectively but extend fermentation period slightly. Finally, the AS addition strategy was successfully applied in 7,000-L fermentor and DHA percentage in TFAs and DHA yield reached 46.06 % and 18.48 g/L, which was 19.54 and 17.41 % higher than that of no-addition strategy. This would provide guidance for the large-scale production of the other similar polyunsaturated fatty acid, and give insight into the nitrogen metabolism in oil-producing microorganisms.  相似文献   

8.
The aim of the study is to determine the effects of iron on circadian clock gene expression and serum lipid metabolism in sucking piglets. Twenty-four neonatal piglets were selected and randomly assigned into three groups (A, B, and C) with eight replicates. Group A were received 1 mL physiological saline by intramuscular administration at d 3 and d 10; group B were received 1 mL iron dextran (100 mg) by intramuscular administration at d 3 and 1 mL physiological saline at d 10, respectively; group C were received 1 mL of iron dextran (100 mg) by intramuscular administration at both d 3 and d 10. Our results reveal that the relative expressions of Cry1, Cry2, Per1, Per2, and Bmal in liver were significantly different in the three groups (p < 0.05). Meanwhile, the content of triglyceride (TG) and high-density lipoprotein (HDL) in serum were also affected by the iron supplementation (p < 0.05). These results indicated that iron affected hepatic circadian clock genes significantly, meanwhile, it may possible association with lipid metabolism.  相似文献   

9.
Methylmercury (MeHg) is a well-known environmental pollutant leading to neurotoxicant associated with aberrant central nervous system (CNS) functions, but its toxic mechanisms have not yet been fully recognized. In the present study, we tested the hypothesis that MeHg induces neuronal injury via glutamate (Glu) dyshomeostasis and oxidative damage mechanisms and that these effects are attenuated by dextromethorphan (DM), a low-affinity and noncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist. Seventy-two rats were randomly divided into four groups of 18 animals in each group: control group, MeHg-treated group (4 and 12 μmol/kg), and DM-pretreated group. After the 4-week treatment, we observed that the administration of MeHg at a dose of 12 μmol/kg significantly increased in total mercury (Hg) levels, disrupted Glu metabolism, overexcited NMDARs, and led to intracellular calcium overload in the cerebral cortex. We also found that MeHg reduced nonenzymatic and enzymatic antioxidants, enhanced neurocyte apoptosis, induced reactive oxygen species (ROS), and caused lipid, protein, and DNA peroxidative damage in the cerebral cortex. Moreover, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) appeared to be inhibited by MeHg exposure. These alterations were significantly prevented by the pretreatment with DM at a dose of 13.5 μmol/kg. In conclusion, these findings strongly implicate that DM has potential to protect the brain from Glu dyshomeostasis and oxidative damage resulting from MeHg-induced neurotoxicity in rat.  相似文献   

10.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

11.
Chitosan oligosaccharide (COS) has been shown to reduce lipid accumulation in liver in mice and rats. The purpose of this study was to investigate whether maternal COS feeding affects hepatic lipid metabolism via influencing the expression of circadian clock genes in piglets. From day (d) 85 of gestation to d 14 of lactation, sixteen pregnant sows were divided into a control group (basal diet without COS supplementation) and a COS group (30 mg COS/kg basal diet). After farrowing, one piglet per litter in each group was selected for the collection of plasma and liver samples on d 0 and d 14 of age, respectively. Interestingly and significantly, we found that maternal COS supplementation promoted plasma and hepatic cholesterol accumulation and up-regulated the mRNA level of negative-regulated element period 1 (Per1), and reduced the abundance of the positive elements, circadian locomotor output cycles kaput (CLOCK), and brain muscle Arnt-like 1 (BMAL1) in the suckling piglets on d 14. These alterations may promote the hepatic cholesterol accumulation, which, in turn, activates hepatic bile acid metabolism and attenuates the relative expression levels of lipid metabolism-associated genes in the liver. However, the expression of CLOCK and BMAL1 and the lipid profile in the plasma and liver were not affected by COS supplementation on d 0. Collectively, our results indicate that maternal supplementation with COS postpartum up-regulates cholesterol accumulation in suckling piglets at age d 14, in part, by the regulation of circadian clock genes.  相似文献   

12.
Nostoc flagelliforme is a terrestrial cyanobacterium species whose metabolism follows an obvious diurnal pattern. Diurnal changes at physiological and proteomic levels of N. flagelliforme were obtained. In the morning (7:00 H), net photosynthesis, dark respiration, as well as the activities of total Rubisco, nitrogenase, glutamine synthetase, SOD and CAT were comparatively high. All these physiological activities significantly decreased in the afternoon (13:00 H), and then slowly increased in the evening (19:00 H). Thirty-one differentially expressed proteins with a variety of important functions were reproducibly detected and identified over a diurnal cycle. These proteins were categorized according to their predicted functions into secretion and regulation (15.79 %), antioxidative processes (21.05 %), nitrogen metabolism (10.53 %), carbohydrate and energy metabolism (10.53 %), as well as cell division (2.63 %). The remaining proteins had unclassified/unknown functions (21.05 %) or were unidentified (18.42 %). The results suggested a metabolic shift from active (7:00 H) to quiescent (13:00 H) and then to active (19:00 H) over the diurnal cycle. The differential expression level of ferritin, Mn-CAT, SOD and Fe-SOD may serve as molecular markers for the diurnal metabolism in N. flagelliforme.  相似文献   

13.
Glucose metabolism is adversely affected in patients following major surgery. Patients may develop hyperglycemia due to a combination of surgical stress and postoperative insulin resistance. A randomized trial was conducted to elucidate the effect of preoperative supplementation with carbohydrates and branched-chain amino acids on postoperative insulin resistance in patients undergoing hepatic resection. A total of 26 patients undergoing a hepatectomy for the treatment of a hepatic neoplasm were randomly assigned to receive a preoperative supplement of carbohydrate and branched-chain amino acid-enriched nutrient mixture or not. The postoperative blood glucose level and the total insulin requirement for normoglycemic control during the 16 h following hepatic resection were determined using the artificial pancreas STG-22. Postoperative insulin requirements for normoglycemic control in the group with preoperative nutritional support was significantly lower than that in the control group (P = 0.039). There was no incidence of hypoglycemia (<40 mg/dL) observed in patients, including those with diabetes mellitus, when the STG-22 was used to control blood glucose levels. STG-22 is a safe and reliable tool to control postoperative glucose metabolism and evaluate insulin resistance. The preoperative oral administration of carbohydrate and branched-chain amino acid-enriched nutrient is of clinical benefit and reduces postoperative insulin resistance in patients undergoing hepatic resection.  相似文献   

14.
Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10–20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.  相似文献   

15.
16.
Sulfonamides have been reported to possess substantial antitumor activity as they act as carbonic anhydrase inhibitors. In addition, selenium appears to have a protective effect at various stages of cancer due to its antioxidant property, enhanced carcinogen detoxification, inhibition of cell invasion, and by inhibiting angiogenesis. Here, in the present study we aimed to evaluate and synergize the cytotoxic activity of sulfonamide and selenium (SM+SE) as effective therapy in the treatment of DENA-induced HCC. Hepatocarcinogeneis was induced by a single intraperitoneal injection of diethylnitrosamine (DENA) (200 mg/kg) in phosphate buffer. 30 Male Wistar rats used in this study were divided randomly into five equal groups (n = 6). DENA-administered animals showed significant alteration (p < 0.001) in liver-specific enzymes—glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), and Alpha fetoproteins (AFP), and also induced severe histopathological changes in the hepatic tissues. Interestingly, treatment with (SE+SE) (SM 30 mg/kg + SE 3 mg/kg) significantly reduced (P < 0.001, P < 0.001, P < 0.001, P < 0.001) the elevated AFP, SGOT, SGPT, and ALP levels, respectively, suggesting that combination therapy of SM+SE has a potential to treat DENA-induced liver damage.  相似文献   

17.
This study was conducted to test the hypothesis that different dietary Met levels affect small-intestinal mucosal integrity in post-weaning piglets. Two groups of piglets (n = 6/group) were weaned at 28 days of age and randomly allotted to a basal diet (without extra Met supplementation) or a Met-supplemented diet (with 0.12 % l-Met) for 14 days. The standardized ileal digestible (SID) Met levels were 0.24 and 0.35 %, respectively. At days 7 and 14 of the trial, venous blood samples were obtained from piglets, followed by their euthanasia for tissue collection. Piglets fed the diet supplemented with l-Met had a higher average daily gain during days 7–14 and improved feed efficiency during the entire period. Concentrations of sulfur amino acids (SAA), glutamate acid (Glu), glutamine (Gln), and taurine in the plasma and tissues were higher for the piglets in the Met-supplemented group. Met supplementation increased cysteine (Cys) and glutathione (GSH) concentrations in the plasma and tissues, leading to reductions in plasma Cys/CySS redox potential and tissue GSH/GSSH redox potential. The small-intestinal mucosa of Met-supplemented piglets exhibited improved villus architecture, compared with control piglets. Met supplementation increased transepithelial electrical resistance of the jejunal mucosa. Transport of Met, Gln and Cys across the jejunal mucosa did not differ between control and Met-supplemented piglets. The abundance occludin was higher, whereas the abundance of active caspase-3 was lower, in the jejunum of the Met-supplemented piglets. Collectively, adequate dietary Met is required for optimal protein synthesis and mucosal integrity in the small intestine of post-weaning piglets.  相似文献   

18.
Nonalcoholic fatty liver disease begins with a relatively benign hepatic steatosis, often associated with increased adiposity, but may progress to a more severe nonalcoholic steatohepatitis with inflammation. A subset of these patients develops progressive fibrosis and ultimately cirrhosis. Various dietary components have been shown to contribute to the development of liver disease, including fat, sugars, and neonatal treatment with high doses of monosodium glutamate (MSG). However, rodent models of progressive disease have been disappointing, and alternative animal models of diet-induced liver disease would be desirable, particularly if they contribute to our knowledge of changes in gene expression as a result of dietary manipulation. The domestic cat has previously been shown to be an appropriate model for examining metabolic changes–associated human diseases such as diabetes. Our aim was therefore to compare changes in hepatic gene expression induced by dietary MSG, with that of a diet containing Trans-fat and high fructose corn syrup (HFCS), using a feline model. MSG treatment increased adiposity and promoted hepatic steatosis compared to control (P < 0.05). Exposure to Trans-fat and HFCS promoted hepatic fibrosis and markers of liver dysfunction. Affymetrix microarray analysis of hepatic gene expression showed that dietary MSG promoted the expression of genes involved in cholesterol and steroid metabolism. Conversely, Trans-fat and HFCS feeding promoted the expression of genes involved in lipolysis, glycolysis, liver damage/regeneration, and fibrosis. Our feline model examining gene–diet interactions (nutrigenomics) demonstrates how dietary MSG, Trans-fat, and HFCS may contribute to the development of hepatic steatosis.  相似文献   

19.
The in vivo effects of oral administration of the high-chromium yeast to healthy and diabetic mice are described. Given that these complexes are proposed to function by potentiating the actions of insulin and activating the insulin receptor kinase, changes in lipid and carbohydrate metabolism would be expected. After 15 weeks administration (500 μg Cr/kg body mass) to healthy mice, abnormal metabolism and pathological change were not observed. After 15 weeks of treatment (0–1,000 μg Cr/kg body mass) of diabetic mice, the effect of high-chromium yeast on blood lipids and blood glycosylated hemoglobin (GHb) of diabetes are not consistent. High-chromium yeast results in a lowering (P?<?0.05) of GHb and triglyceride, lowering (P?<?0.01) of total cholesterol, and restoration (P?<?0.01) of insulin; these results are in stark contrast to those of diabetic mice of administration of normal yeast, which have no effect on these parameters and serve as control group. The histopathological analysis of pancreas islet shows that high-chromium yeast could profoundly protect the impaired pancreatic islet and β-cells from inflammatory infiltration and fibrosis.  相似文献   

20.
We compared the effects of two major isoflavones, daidzein and genistein, on lipid metabolism in rats. Daidzein (150 mg/kg diet), genistein (150 mg/kg diet), daidzein and genistein (1:1, 300 mg/kg diet), or control diets were fed to 4 groups of 6-week-old ovariectomized (Ovx) and non-Ovx Sprague Dawley rats for 4 weeks. Dietary daidzein, but not genistein, reduced serum and hepatic total cholesterol levels significantly relative to that by the control group, regardless of whether the rats had undergone ovariectomy. Genistein did not exhibit any physiological effects on lipid levels, but did affect genes involved in cholesterol metabolism. These results indicate that daidzein and genistein may influence lipid regulation via differing modes of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号