首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic serine racemase from Dictyostelium discoideum is a fold-type II pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes racemization and dehydration of both isomers of serine. In the present study, the catalytic mechanism and role of the active site residues of the enzyme were examined by site-directed mutagenesis. Mutation of the PLP-binding lysine (K56) to alanine abolished both serine racemase and dehydrase activities. Incubation of d- and l-serine with the resultant mutant enzyme, K56A, resulted in the accumulation of PLP-serine external aldimine, while less amounts of pyruvate, α-aminoacrylate, antipodal serine and quinonoid intermediate were formed. An alanine mutation of Ser81 (S81) located on the opposite side of K56 against the PLP plane converted the enzyme from serine racemase to l-serine dehydrase; S81A showed no racemase activity and had significantly reduced d-serine dehydrase activity, but it completely retained its l-serine dehydrase activity. Water molecule(s) at the active site of the S81A mutant enzyme probably drove d-serine dehydration by abstracting the α-hydrogen in d-serine. Our data suggest that the abstraction and addition of α-hydrogen to l- and d-serine are conducted by K56 and S81 at the si- and re-sides, respectively, of PLP.  相似文献   

2.
Since d-amino acids were identified in mammals, d-serine has been one of the most extensively studied “unnatural amino acids”. This brain-enriched transmitter-like molecule plays a pivotal role in the human central nervous system by modulating the activity of NMDA receptors. Physiological levels of d-serine are required for normal brain development and function; thus, any alterations in neuromodulator concentrations might result in NMDA receptor dysfunction, which is known to be involved in several pathological conditions, including neurodegeneration(s), epilepsy, schizophrenia, and bipolar disorder. In the brain, the concentration of d-serine stored in cells is defined by the activity of two enzymes: serine racemase (responsible for both the synthesis and degradation) and d-amino acid oxidase (which catalyzes d-serine degradation). Both enzymes emerged recently as new potential therapeutic targets for NMDA receptor-related diseases. In this review we have focused on human d-amino acid oxidase and provide an extensive overview of the biochemical and structural properties of this flavoprotein and their functional significance. Furthermore, we discuss the mechanisms involved in modulating enzyme activity and stability with the aim to substantiate the pivotal role of d-amino acid oxidase in brain d-serine metabolism in physiological and pathological conditions and to highlight its great significance for novel drug design/development.  相似文献   

3.
The discovery of large amounts of d-serine in the brain challenged the dogma that only l-amino acids are relevant for eukaryotes. The levels of d-serine in the brain are higher than many l-amino acids and account for as much as one-third of l-serine levels. Several studies in the last decades have demonstrated a role of d-serine as an endogenous agonist of N-methyl-d-aspartate receptors (NMDARs). d-Serine is required for NMDAR activity during normal neurotransmission as well as NMDAR overactivation that takes place in neurodegenerative conditions. Still, there are many unanswered questions about d-serine neurobiology, including regulation of its synthesis, release and metabolism. Here, we review the mechanisms of d-serine synthesis by serine racemase and discuss the lessons we can learn from serine racemase knockout mice, focusing on the roles attributed to d-serine and its cellular origin.  相似文献   

4.
A potential role for d-amino acids in motor neuron disease/amyotrophic lateral sclerosis (ALS) is emerging. d-Serine, which is an activator/co-agonist at the N-methyl-d-aspartate glutamate receptor subtype, is elevated both in spinal cord from sporadic cases of ALS and in an animal model of ALS. Furthermore, we have shown that a mutation in d-amino acid oxidase (DAO), an enzyme strongly localized to spinal cord motor neurons and brain stem motor nuclei, is associated with familial ALS. DAO plays an important role in regulating levels of d-serine, and its function is impaired by the presence of this mutation and this may contribute to the pathogenic process in ALS. In sporadic ALS cases, elevated d-serine may arise from induction of serine racemase, its synthetic enzyme, caused by cell stress and inflammatory processes thought to contribute to disease progression. Both these abnormalities in d-serine metabolism lead to an increase in synaptic d-serine which may contribute to disease pathogenesis.  相似文献   

5.
In this study, the d-serine ammonia lyase (dsdA) gene from Escherichia coli was evaluated as a selectable marker for maize transformation. Plants are incapable of utilizing the D-form of most amino acids, and d-serine has recently been demonstrated to be phytoinhibitory to plant growth. d-Serine ammonia lyase detoxifies d-serine via a substrate-specific reaction to pyruvate, ammonia, and water. d-Serine inhibits germination of isolated maize immature embryos and growth of embryogenic callus from wild-type plants at concentrations about approx. 2?C15 mM. Transgenic plants were recovered in the presence of d-serine in tissue culture media with dsdA as the selection marker at efficiencies comparable to using a mutated acetohydroxy acid synthase selection marker gene and selection in the presence of imidazolinone herbicides. Immature embryos infected with an Agrobacterium strain containing an acetohydroxy acid synthase gene construct without dsdA did not yield any transgenic events on the selection medium with 10 mM d-serine, indicating that d-serine provided selection tight enough to prevent escapes. Molecular analysis confirmed the integration of the dsdA gene into the genome of the transgenic plants. No adverse phenotypes were observed in the greenhouse, and expression of the dsdA marker had no affect on agronomic characteristics or grain yield in multi-location field trials. Seed compositional analysis demonstrated no significant differences in the contents of seed protein, starch, fatty acids, fiber, phytic acid, and free amino acids between transgenic and non-transgenic control plants. These data indicate that the dsdA gene is properly expressed in maize and the d-serine ammonia lyase (DSDA) enzyme functions appropriately to metabolize d-serine during in vitro selection. Preliminary safety assessments indicated that no adverse affects would be expected if humans were exposed to the DSDA protein in the diet from an allergenicity or toxicity perspective. The dsdA gene in combination with phytoinhibitory levels of d-serine represents a new and effective selectable marker system for maize transformation.  相似文献   

6.
The penaeid prawn, Litopenaeus vannamei, was employed to investigate intracellular isosmotic regulation in situations where invertebrates encounter hyposmosis. Hemolymph osmolality was first analyzed to confirm osmoregulatory conditions in the experimental animals, followed by analysis of amino acids in muscle and hemolymph using high-performance liquid chromatography. Total muscle amino acid levels decreased when hemolymph osmolality was extremely low, whereas glycine and l-serine levels increased in the hemolymph. These results suggest that tissue amino acids were released into the hemolymph to lower the osmolality of the tissues for purposes of low-salinity adaptation. Next, oxygen consumption and ammonia excretion rates were examined, and the O/N ratio was determined. Oxygen consumption levels and ammonia excretion rates increased, and the O/N ratio decreased when the animals were exposed to low salinity. These results suggest that amino acids were abundantly consumed as an energy source when animals were exposed to low salinity. To confirm the consumption of particular amino acids, the specific activity of l-serine ammonia lyase was also examined. Specific activity was highest when l-serine levels in the hemolymph were highest. Thus, it appears that l-serine levels increased under hyposmotic conditions due to the consumption of l-serine as an energy source. It was concluded that particular amino acids as osmolytes are likely metabolized as energy sources and consumed for purposes of hyposmotic adaptation.  相似文献   

7.
l-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, l-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce l-serine from glucose. To accumulate l-serine, sdaA encoding the l-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious l-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA FR , serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L l-serine in batch cultivation and 8.34 g/L l-serine in fed-batch cultivation.  相似文献   

8.
Following the procedure of Schramm for the synthesis of polynucleotides and polysaccharides, homopolymers ofdl-leucine,dl-phenylalanine,dl-serine, anddl-valine have been prepared in yields of 13 to 57 % through the mediation of a polymetaphosphate ester. Copolymers of the amino acids also have been prepared in lower yields (4–5 %). Infrared spectra show that the polymers are not diketopiperazines and that the polymers ofdl-leucine,dl-phenylalanine, anddl-valine are polypeptides. Conversions of as much as 57% and degrees of polymerization of approximately 12 were obtained for polyleucine. Small peptides containing possibly 2 to 3 leucine residues were detected and isolated as possible intermediates in the leucine polymerization reaction. For the polymerization ofdl-valine, a temperature of 60°C, a reaction time of 10–24 h, and a ratio of polymetaphosphate ester to amino acid of 3:1 appeared to give the best results. The Schramm procedure was initially suggested as a chemical evolution model for the formation of biological polymers under prebiotic conditions. Although the significance of this reaction to prebiological organic chemistry may be questioned, it still offers a mechanistic model for the study of the synthetic reactions involving polyphosphates which are indirectly relevant to abiotic molecular evolution and the problem of the origin of life.  相似文献   

9.
d-Serine, a co-agonist at the NMDA receptor (NMDAR), is synthesized from l-serine by the enzyme serine racemase (SR), which is heavily expressed in the forebrain. Although SR was originally reported to be localized exclusively to astrocytes, recent conditional knock out results demonstrate that little SR is expressed in forebrain astrocytes. As a consequence, the cellular location of its product, d-serine, in the brain is also uncertain. Immunocytochemistry now indicates that SR is expressed primarily in forebrain glutamatergic neurons with the remainder in GABAergic interneurons. We utilized SR deficient (SR?/?) mice, which have <15 % of normal d-serine levels, to validate and optimize a d-serine immunohistochemical method. Nearly all of the d-serine in neocortex and hippocampus (HP) is found in neurons, with virtually no d-serine co-localizing with two astrocyte markers. Interestingly, only a subset of the d-serine positive neurons contained SR in the neocortex and HP. Greater than half of the d-serine positive neurons were GABAergic interneurons, with a majority of these neurons containing parvalbumin and/or somatostatin. Only ~25–40 % of interneurons expressed SR in the neocortex and HP. Finally, we demonstrate in human post-mortem neocortex that SR is found in both excitatory and inhibitory neurons, but not in S100β-containing astrocytes. In sum, these findings conclusively demonstrate that the majority of d-serine is both synthesized and stored in neurons. It will be important to determine the functional significance for the separation of synthesis and storage of d-serine in neurons, as well as the presence of this NMDAR co-agonist in GABAergic interneurons.  相似文献   

10.
In an in vivo dialysis experiment, the intra-medial frontal cortex infusion of a system A and Asc-1 transporter inhibitor, S-methyl-l-cysteine, caused a concentration-dependent increase in the dialysate contents of an endogenous coagonist for the N-methyl-d-aspartate (NMDA) type glutamate receptor, d-serine, in the cortical portion. These results suggest that these neutral amino acid transporters could control the extracellular d-serine signaling in the brain and be a target for the development of a novel threapy for neuropsychiatric disorders with an NMDA receptor dysfunction.  相似文献   

11.
3-O-β-d-Xylopyranosyl-l-serine (xylosylserine) was synthesized by the following three-step procedure: 1) 2,3,4-tri-O-benzoyl-α-d-xylopyranosyl bromide (benzobromoxylose) was condensed withN-carbobenzoxy-l-serine benzyl ester using the silver triflate-collidine complex as promoter; 2) theN-carbobenzoxy and benzyl ester groups in the resultant glycoside were cleaved by transfer hydrogenation with palladium black as catalyst and ammonium formate as hydrogen donor; and 3) the benzoyl groups were removed with methanolic ammonia. Xylosylserine was obtained in an overall yield of 70%. O-β-d-Galactopyranosyl-(1-4)-O-β-d-xylopyranosyl-(1-3)-l-serine (galactosylxylosylserine) was also synthesized by this methodology and was characterized by 2-dimensional (2D) NMR spectroscopy techniques. The two serine glycosides (xylosylserine and galactosylxylosylserine) were used in detection and partial purification of galactosyltransferase I (UDP-d-galactose:d-xylose galactosyltransferase) from adult rat liver.  相似文献   

12.
d-Amino acids are stereoisomers of l-amino acids. They are often called unnatural amino acids, but several d-amino acids have been found in mammalian brains. Among them, d-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. d-Amino-acid oxidase (DAO), which degrades neutral and basic d-amino acids, is mainly present in the hindbrain. DAO catabolizes d-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of d-serine and other d-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of d-serine. d-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that d-amino acids and DAO have pivotal functions in the central nervous system.  相似文献   

13.
This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring d-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were d-amino acid oxidase for d-serine sensitivity (linear region slope, 61?±?7?μA?cm–2?mM–1; limit of detection, 20?nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1?s, ideal for ‘real-time’ monitoring, and detection of systemically administered d-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of d-serine in excitotoxicity, and modulation of N-methyl-d-aspartate receptor function by d-serine and glycine in the central nervous system.  相似文献   

14.
Dietary intake of l-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, l-alanine and l-serine were preferred over their d-enantiomer counterparts, while no such effect was observed for l-threonine vs. d-threonine; (2) these behavioral patterns were closely associated with the ability of l-amino acids to promote increases in respiratory exchange ratios such that those, and only those, l-amino acids able to promote increases in respiratory exchange ratios were preferred over their d-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.  相似文献   

15.
Gustatory sensation of l- and d-amino acids in humans   总被引:1,自引:0,他引:1  
Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to d-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and l-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, l-serine had mainly sweet and minor umami taste, and d-serine was sweet. We further applied Stevens’ psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).  相似文献   

16.
Cyclic depsipeptide FK228 with an intramolecular disulfide bond is a potent inhibitor of histone deacetylases (HDAC). FK228 is stable in blood because of its prodrug function, whose –SS– bond is reduced within the cell. Here, cyclic peptides with –SS– bridges between a variety of amino acids were synthesized and assayed for HDAC inhibition. Cyclic peptide 3, cyclo(-l-amino acid-l-amino acid-l-Val-d-Pro-), with an –SS– bridge between the first and second amino acids, was found to be a potent HDAC inhibitor. Cyclic peptide 7, cyclo(-l-amino acid-d-amino acid-l-Val-d-Pro-), with an –SS– bridge between the first and second amino acids, was also a potent HDAC inhibitor.  相似文献   

17.
Peptides are chiral molecules with their structure determined by the composition and configuration of their amino acid building blocks. The naturally occurring amino acids, except glycine, possess two chiral forms. This allows the formation of multiple peptide diastereomers that have the same sequence. Although living organisms use l-amino acids to make proteins, a group of d-amino acid-containing peptides (DAACPs) has been discovered in animals that have at least one of their residues isomerized to the d-form via an enzyme-catalyzed process. In many cases, the biological functions of these peptides are enhanced due to this structural conversion. These DAACPs are different from those known to occur in bacterial cell wall and antibiotic peptides, the latter of which are synthesized in a ribosome-independent manner. DAACPs have now also been identified in a number of distinct groups throughout the Metazoa. Their serendipitous discovery has often resulted from discrepancies observed in bioassays or in chromatographic behavior between natural peptide fractions and peptides synthesized according to a presumed all-l sequence. Because this l to d post-translational modification is subtle and not detectable by most sequence determination approaches, it is reasonable to suspect that many studies have overlooked this change; accordingly, DAACPs may be more prevalent than currently thought. Although diastereomer separation techniques developed with synthetic peptides in recent years have greatly aided in the discovery of natural DAACPs, there is a need for new, more robust methods for naturally complex samples. In this review, a brief history of DAACPs in animals is presented, followed by discussion of a variety of analytical methods that have been used for diastereomeric separation and detection of peptides.  相似文献   

18.
Basically the peptidoglycan of Myxobater AL-1 consists of alternating β-1,4-linked N-acetylglucosamic-N-acetylmuramic acid chains. After splitting the aminosugar backbone with a specific algal enzyme three subunits arise: a monomer, a dimer and a trimer. Investigation of the monomer with specific enzymes and comparison of the degradation products to standards derived from other bacterial peptidoglycans suggest the following structure of the monomer peptide: l-alanyl-d-glutamic-l-meso-diaminopimelic-d-alanine. A d-alanyl-d-meso-diaminopimelic acid bond is the bridgebond between the peptides of the subunits.  相似文献   

19.
Cell extracts prepared from several oral treponemes isolated from the subgingival plaque of periodontitis patients showed high enzyme activity toward phenylazobenzyl-oxycarbonyl-l-prolyl-l-leucylglycyl-l-prolyl-d-arginine (a compound used as a substrate for microbial collagenases). One major enzyme hydrolyzing this substrate at the Leu-Gly bond only was partially purified from an unspeciated treponeme (strain US),Treponema denticola ATCC 35405, and 29 different clinical isolates ofT. denticola. TheTreponema US enzyme also hydrolyzed furylacryloyl-l-leucylglycyl-l-prolyl-l-alanine (another substrate of bacterial collagenases) at the Leu-Gly bond. This enzyme also hydrolyzed various collagens and collagen-derived peptides. These treponemal proteases were sensitive to metal chelators andp-chloromercury compounds. The results indicate that human oral treponemes contain enzymes that readily hydrolyze in chromogenic protease substrates the Leu-Gly bond only that is the cleavage site of these substrates also by “true” microbial collagenases.  相似文献   

20.
Humanin (HN), a peptide of 24 amino acid residues, suppresses the neuronal cell death that is induced by the gene products of Alzheimer’s disease. HN contains two Ser residues at positions 7 and 14. Because the proportion of d-Ser isomerized from l-Ser in proteins appears to increase as cellular organs age, we explored the structural effects of the isomerization of each Ser residue in HN. By using a thioflavin-T assay to detect fibril formation, we found that an HN derivative that contained two isomerized d-Ser residues had a greater tendency to form fibrils than did wild-type HN or HNs containing single d-Ser residues. A previous report showed that HN containing two d-Ser residues exerts neuroprotective activity. Our data, therefore, suggest that the fibril formation by HN that contains two d-Ser residues may promote HN neuroprotective activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号