首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of high efficiency and low cost protein refolding methods is a highlighted research focus in biotechnology. Artificial molecular chaperone (AMC) and protein folding liquid chromatography (PFLC) are two attractive refolding methods developed in recent years. In the present work, AMC and one branch of PFLC, ion exchange chromatography (IEC), are integrated to form a new refolding method, artificial molecular chaperone‐ion exchange chromatography (AMC‐IEC). This new method is applied to the refolding of a widely used model protein, urea‐denatured/dithiothreitol‐reduced lysozyme. Many factors influencing the refolding of lysozyme, such as urea concentration, β‐cyclodextrin concentration, molar ratio of detergent to protein, mobile phase flow rate, and type of detergent, were investigated, respectively, to optimize the conditions for lysozyme refolding by AMC‐IEC. Compared with normal IEC refolding method, the activity recoveries of lysozyme obtained by AMC‐IEC were much higher in the investigated range of initial protein concentrations. Moreover, the activity recoveries obtained by using this newly developed refolding method were still quite high for denatured/reduced lysozyme at high initial concentrations. When the initial protein concentration was 200 mg mL?1, the activity recovery was over 60%. In addition, the lifetime of the chromatographic column during AMC‐IEC was much longer than that during protein refolding by normal IEC. Therefore, AMC‐IEC is a high efficient and low cost protein refolding method. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
The ultimate goal of proteomics is to identify biologically active proteins and to produce them using biotechnology tools such as bacterial hosts. However, proteins produced by Escherichia coli must be refolded to their native state. Protein folding liquid chromatography (PFLC) is a new method developed in recent years, and it is widely used in molecular biology and biotechnology. In this paper, the new method, PFLC is introduced and its recent development is reviewed. In addition the paper includes definitions, advantages, principles, applications for both laboratory and large scales, apparatus, and effecting factors of PFLC. In addition, the role of this method in the future is examined.  相似文献   

3.
Protein folding liquid chromatography (PFLC) is a powerful tool for simultaneous refolding and purification of recombinant proteins in inclusion bodies. Urea gradient size exclusion chromatography (SEC) is a recently developed protein refolding method based on the SEC refolding principle. In the presented work, recombinant human granulocyte colony-stimulating factor (rhG-CSF) expressed in Escheriachia coli (E. coli) in the form of inclusion bodies was refolded with high yields by this method. Denatured/reduced rhG-CSF in 8.0 mol.L(-1) urea was directly injected into a Superdex 75 column, and with the running of the linear urea concentration program, urea concentration in the mobile phase and around the denatured rhG-CSF molecules was decreased linearly, and the denatured rhG-CSF was gradually refolded into its native state. Aggregates were greatly suppressed and rhG-CSF was also partially purified during the refolding process. Effects of the length and the final urea concentration of the urea gradient on the refolding yield of rhG-CSF by using urea gradient SEC were investigated respectively. Compared with dilution refolding and normal SEC with a fixed urea concentration in the mobile phase, urea gradient SEC was more efficient for rhG-CSF refolding--in terms of specific bioactivity and mass recovery, the denatured rhG-CSF could be refolded at a larger loading volume, and the aggregates could be suppressed more efficiently. When 500 microL of solubilized and denatured rhG-CSF in 8.0 mol.L(-1) urea solution with a total protein concentration of 2.3 mg.mL(-1) was loaded onto the SEC column, rhG-CSF with a specific bioactivity of 1.0 x 10(8) IU.mg(-1) was obtained, and the mass recovery was 46.1%.  相似文献   

4.
Purification of the recombinant human renin receptor (rhRnR) is a major aspect of its biological or biophysical analysis, as well as structural research. A simple and efficient method for the refolding and purification of rhRnR expressed in Escherichia coli with weak anion‐exchange chromatography (WAX) was presented in this work. The solution containing denatured rhRnR in 8.0 mol/L urea extracted from the inclusion bodies was directly injected into the WAX column. The aggregation was prevented and the soluble form of renatured rhRnR in aqueous solution was obtained after desorption from the column. Effects of the extracting solutions, the pH values and urea concentrations in the mobile phase, as well as the sample size on the refolding and purification of rhRnR were investigated, indicating that the above mentioned factors had remarkable influences on the efficiency of refolding, purification and mass recovery of rhRnR. Under the optimal conditions, rhRnR was successfully refolded and purified simultaneously by WAX in one step within only 30 min. The result was satisfactory with mass recovery of 71.8% and purity of 94.8%, which was further tested by western blotting. The specific binding of the purified rhRnR to recombinant human renin was also determined using surface plasmon resonance (SPR). The association constant of rhRnR to recombinant human renin was calculated to be 3.25 × 108 L/mol, which demonstrated that rhRnR was already renatured and simultaneously purified in one step using WAX. All of the above demonstrate that protein folding liquid chromatography (PFLC) should be a powerful tool for the purification and renaturation of rhRnR. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:864–871, 2014  相似文献   

5.
Protein refolding is currently a fundamental problem in biophysics and molecular biology. We have studied the refolding process of frutalin, a tetrameric lectin that presents structural homology with jacalin but shows a more marked biological activity. The initial state in our refolding puzzle was that proteins were unfolded after thermal denaturation or denaturation induced by guanidine hydrochloride, and under both conditions, frutalin was refolded. The denaturation curves, measured by fluorescence emission, gave values of conformational stability of 17.12 kJ.mol-1 and 12.34 kJ.mol-1, in the presence and absence of d-galactose, respectively. Native, unfolded, refolded frutalin and a distinct molecular form denoted misfolded, were separated by size-exclusion chromatography (SEC) on Superdex 75. The native and unfolded samples together with the fractions separated by SEC were also analyzed for heamagglutination activity by CD and fluorescence spectroscopy. The secondary structure content of refolded frutalin estimated from the CD spectra was found to be close to that of the native molecule. All the results obtained confirmed the successful refolding of the protein and suggested a nucleation-condensation mechanism, whereby the sugar-binding site acts as a nucleus to initiate the refolding process. The refolded monomers, after adopting their native three-dimensional structures, spontaneously assemble to form tetramers.  相似文献   

6.
Protein refolding is currently a fundamental problem in biophysics and molecular biology. We have studied the refolding process of frutalin, a tetrameric lectin that presents structural homology with jacalin but shows a more marked biological activity. The initial state in our refolding puzzle was that proteins were unfolded after thermal denaturation or denaturation induced by guanidine hydrochloride, and under both conditions, frutalin was refolded. The denaturation curves, measured by fluorescence emission, gave values of conformational stability of 17.12 kJ x mol(-1) and 12.34 kJ x mol(-1), in the presence and absence of d-galactose, respectively. Native, unfolded, refolded frutalin and a distinct molecular form denoted misfolded, were separated by size-exclusion chromatography (SEC) on Superdex 75. The native and unfolded samples together with the fractions separated by SEC were also analyzed for heamagglutination activity by CD and fluorescence spectroscopy. The secondary structure content of refolded frutalin estimated from the CD spectra was found to be close to that of the native molecule. All the results obtained confirmed the successful refolding of the protein and suggested a nucleation-condensation mechanism, whereby the sugar-binding site acts as a nucleus to initiate the refolding process. The refolded monomers, after adopting their native three-dimensional structures, spontaneously assemble to form tetramers.  相似文献   

7.
蛋白的色谱复性及同时纯化   总被引:25,自引:2,他引:25  
对近年来新发展的用液相色谱(LC)进行蛋白质复性及同时纯化的方法做了评述,详细介绍了蛋白质在4种液相色谱上的复性及同时纯化的方法、设备和影响因素,并对各自的优缺点进行了比较,为色谱法作为研究蛋白质折叠及用于基因工程生产治疗蛋白质的复性及同时纯化技术的进一步应用提供依据。  相似文献   

8.
Dilution and column-based protein refolding techniques are compared for refolding Delta 5-3-ketosteroid isomerase (KSI) with a C-terminus his6-tag. Column refolding was performed by removing the denaturant while the protein was adsorbed in an immobilized metal affinity chromatography column. Both dilution refolding and a single-step column-based refolding strategy were optimized to maximize the recovery of KSI enzyme activity, and achieved refolding yields of 87% and 70% respectively. It was found that the column-based refolding yield was reduced at higher adsorbed protein concentrations. An elution gradient with increasing imidazole concentration was used to selectively elute the biologically active KSI protein following column refolding, with high molecular weight KSI aggregates retained in the column. An iterative column-refolding process was then developed to denature and refold protein retained in the column, which significantly increased the refolding yield at high-adsorbed protein concentrations. Repetition of the column refolding operation increased the refolding yield from 50% to 75% for protein adsorbed at a concentration of 2.9 mg/mL of adsorbent. Although for the KSI protein column-based refolding did not improve the overall refolding yield compared to dilution refolding, it may still be advantageous due to the ease of integration with purification operations, increased control over the refolding conditions, and the ability to segregate refolded protein from inactive aggregates during elution.  相似文献   

9.
The 20S proteasome is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 protein subunits which are arranged into four staggered heptameric rings. The outer rings consist of alpha-subunits which are responsible for binding of proteasome activators, inhibitors, and regulators. To better characterize human alpha5-subunit (PSMA5) of the 20S proteasome, we have established a high-efficiency Escherichia coli expression system. The DNA-coding sequence for the human PSMA5, which was subcloned into the vector pET-22b (+), has been expressed as inclusion bodies in E. coli BL21 (DE3). To produce the native PSMA5, straightforward protocols have been developed for refolding the human PSMA5 in the presence of surfactants using dilution refolding and size-exclusion chromatography matrix refolding methods. After refolding, recovery yields of about 20% were obtained, respectively, with purity above 95%. The human PSMA5 was detected by dynamic light scattering in refolding process, and the molecular weight of the final refolded product was measured using gel filtration chromatography, which indicates that the human PSMA5 exists mainly as tetramer.  相似文献   

10.
大肠杆菌表达的单链抗体柱复性的研究   总被引:4,自引:0,他引:4  
对包含体表达的抗乙肝病毒表面抗原(HBsAg)的单链抗体(ScFv)纯化复性进行了探索.尝试了利用金属螯合亲和层析和凝胶层析柱进行柱上在位复性的可行性. 对包含体表达的ScFv进行透析复性与柱复性,比较其相对复性率及蛋白质回收率,发现柱上复性效果优于传统的透析复性.抗HBsAg ScFv经凝胶色谱Sephacyl S-200柱复性的相对复性率为98%, 蛋白质回收率为81%.由于将纯化复性同步进行,简化了操作程序,提高了产品的回收率.  相似文献   

11.
评述了蛋白质复性研究的科学背景及蛋白质折叠机制的研究现状 ,详细介绍近年来蛋白质复性技术的研究进展 ,包括稀释添加技术和各种辅助因子的作用、固定化辅助因子应用、尺寸排阻色谱和固定化辅助因子色谱等。  相似文献   

12.
《Process Biochemistry》2010,45(9):1570-1576
Protein refolding using size exclusion chromatography (SEC) is advantageous over conventional refolding methods in terms of ease of automation, simultaneous purification capabilities, and the non-adsorptive protein–matrix interaction which eliminates steric constraints. Despite these advantages, the widespread use of SEC refolding remains restricted by low process productivity and product concentration bottlenecks. This study aims to address those limitations and exploit SEC advantages for large-scale refolding applications. Specifically, this study reports the development of a pulsed-fed size exclusion chromatography (PF-SEC) refolding platform, which successfully refolded E. coli-derived α-fetoprotein (AFP) to achieve 53% refolding yield at 0.9 mg/ml AFP refolding concentration. AFP was introduced into the column by pulsed injection to increase feed load, while suppressing concentration-induced aggregation. Refolding was initiated by a urea gradient in the column, where the gradient length could be readily adjusted to complement pulsed feeding patterns. AFP refolding productivity with PF-SEC improved by 8- and 64-fold compared to ion-exchange chromatography refolding and pulsed dilution refolding, respectively, at a fixed refolding concentration. Through a unique integration of pulsed feeding and urea gradient development, this new PF-SEC refolding methodology overcomes ‘productivity and concentration’-related disadvantages inherent in SEC, and will be scalable for large-scale protein refolding applications.  相似文献   

13.
In vitro protein refolding by chromatographic procedures   总被引:15,自引:0,他引:15  
In vitro protein refolding is still a bottleneck in both structural biology and in the development of new biopharmaceuticals, especially for commercially important polypeptides that are overexpressed in Escherichia coli. This review focuses on protein refolding methods based on column procedures because recent advances in chromatographic refolding have shown promising results.  相似文献   

14.
Oxidative refolding chromatography: folding of the scorpion toxin Cn5   总被引:19,自引:0,他引:19  
We have made an immobilized and reusable molecular chaperone system for oxidative refolding chromatography. Its three components-GroEL minichaperone (191-345), which can prevent protein aggregation; DsbA, which catalyzes the shuffling and oxidative formation of disulfide bonds; and peptidyl-prolyl isomerase-were immobilized on an agarose gel. The gel was applied to the refolding of denatured and reduced scorpion toxin Cn5. The 66-residue toxin, which has four disulfide bridges and a cis peptidyl-proline bond, had not previously been refolded in reasonable yield. We recovered an 87% yield of protein with 100% biological activity.  相似文献   

15.
The ionic liquid 1‐ethyl‐3‐methyl imidazolium chloride (EMIM Cl) and the amino acid l‐ arginine hydrochloride (l ‐ArgHCl) have been successfully used to improve the yield of oxidative refolding for various proteins. However, the molecular mechanisms behind the actions of such solvent additives—especially of ionic liquids—are still not well understood. To analyze these mechanisms, we have determined the transfer free energies from water into ionic liquid solutions of proteinogenic amino acids and of diketopiperazine as peptide bond analogue. For EMIM Cl and 1‐ethyl‐3‐methyl imidazolium diethyl phosphate, which had a suppressive effect on protein refolding, as well as for l ‐ArgHCl favorable interactions with amino acid side chains, but no favorable interactions with the peptide backbone could be observed. A quantitative analysis of other ionic liquids together with their already published effects on protein refolding showed that only solvent additives within a certain range of hydrophobicity, chaotropicity and kosmotropicity were effective for the refolding of recombinant plasminogen activator. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1129–1140, 2014.  相似文献   

16.
包涵体蛋白的分离和色谱法体外复性纯化研究进展   总被引:2,自引:0,他引:2  
重组蛋白在大肠杆菌中表达多为无活性的包涵体形式,须经洗涤、溶解、复性后才能得到生物活性蛋白。综述了近年来包涵体蛋白分离纯化和复性技术研究进展,重点讨论了色谱法复性技术的应用,包括尺寸排阻色谱、亲和色谱、离子交换色谱、疏水相互作用色谱、固定化脂质体色谱、扩张床吸附色谱的进展情况。  相似文献   

17.
For large-scale production, as required in structural biology, membrane proteins can be expressed in an insoluble form as inclusion bodies and be refolded in vitro. This requires refolding conditions where the native form is thermodynamically stable and where nonproductive pathways leading to aggregation are avoided. Examples of successful refolding are reviewed and general guidelines to establish refolding protocols of membrane proteins are presented.  相似文献   

18.
In vitro folding of alpha-helical membrane proteins   总被引:8,自引:0,他引:8  
For large-scale production, as required in structural biology, membrane proteins can be expressed in an insoluble form as inclusion bodies and be refolded in vitro. This requires refolding conditions where the native form is thermodynamically stable and where nonproductive pathways leading to aggregation are avoided. Examples of successful refolding are reviewed and general guidelines to establish refolding protocols of membrane proteins are presented.  相似文献   

19.
The cDNA encoding an isoform of the cypress major pollen allergen, Cup a1.02, has been cloned and expressed in Escherichia coli as a N-terminal 6x His-tagged protein. To increase recovery, Cup a1.02 was expressed at high levels exploiting the T5 strong promoter and led to accumulate as inclusion bodies. The insoluble purified aggregates were solubilized in 6 M guanidine hydrochloride, immobilized using nickel-chelating affinity chromatography, and successfully refolded by controlled removal of the chaotropic reagent. Enhanced protein refolding was observed by reducing the protein concentration at 0.6-0.8 mg/ml. SDS-PAGE and gel filtration chromatography indicated an apparent molecular mass of approximately 40 kDa and the occurrence of the protein as monomers. The reconstituted fusion protein displayed the same immunological properties of the native Cup a1.02 protein as proven by IgE immunoreactivity. Immunoblotting, ELISA, and histamine release test showed that the tag did not preclude the protein functionality hence validating its correct three-dimensional folding. The protein fold was also assessed by CD spectroscopy and deconvolution of the spectrum allowed to estimate the secondary structure as a prevalence of beta structures (higher than 60%) and a small contribution from alpha helices (less than 12%). The reported procedure has proven to be useful for the production of multi-milligrams of recombinant Cup a1.02 allergen suitable for structural biology studies and for the molecular and functional characterization of the IgE binding sites.  相似文献   

20.
The cytosolic chaperonin TRiC was isolated from ovine testes using ultracentrifugation and heparin-Sepharose chromatography. The molecular mass of the obtained preparation was shown to exceed 900 kDa (by Blue Native PAGE). SDS–PAGE yielded a set of bands in the range of 50–60 kDa. Electron microscopy examination revealed ring-shaped complexes with the outer diameter of 15 nm and the inner diameter of approximately 6 nm. The results suggest that the purified chaperonin is an oligomeric complex composed of two 8-membered rings.The chaperonin TRiC was shown to assist an ATP-dependent refolding of recombinant forms of sperm-specific glyceraldehyde-3-phosphate dehydrogenase, an enzyme that is expressed only in precursor cells of the sperms in the seminiferous tubules of the testes. In contrast, TRiC did not influence the refolding of muscle isoform of glyceraldehyde-3-phosphate dehydrogenase and assisted the refolding of muscle lactate dehydrogenase by an ATP-independent mechanism. The obtained results suggest that TRiC is likely to be involved in the refolding of sperm-specific proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号