首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.  相似文献   

2.
Presynaptic nerve terminals contain a great number ofsynaptic vesicles filled with neurotransmitter. The transmission of information in synapses is mediated by release of transmitter from vesicles: exocytosis, after their fusion with presynaptic membrane. At the functioning synapses, the continuous recycling of synaptic vesicles occurs (vesicle cycle), which provides multiple reuse of vesicular membrane material during synaptic activity. Vesicle cycle consists of large number of steps, including vesicle fusion--exocytosis, formation of new vesicles--endocytosis, vesicle sorting, filling of vesicles with transmitter, intraterminal vesicle transport driving the vesicles to different vesicle pools and preparing to next exocytic event. At this paper, I presented the latest literature and our data regarding the steps and mechanisms of vesicle cycle at synapses. Special attention was paid to neuromuscular synapse as the most thoroughly investigated and as my favorite preparation.  相似文献   

3.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

4.
To monitor the fate of the synaptic vesicle membrane compartment, synaptic vesicles were isolated under varying experimental conditions from blocks of perfused Torpedo electric organ. In accordance with previous results, after low-frequency stimulation (0.1 Hz, 1,800 pulses) of perfused blocks of electric organ, a population of vesicles (VP2 type) can be separated by density gradient centrifugation and chromatography on porous glass beads that is denser and smaller than resting vesicles (VP1 type). By simultaneous application of fluorescein isothiocyanate-dextran as extracellular volume marker and [3H]acetate as precursor of vesicular acetylcholine, and by identifying the vesicular membrane compartment with an antibody against the synaptic vesicle transmembrane glycoprotein SV2, we can show that the membrane compartment of part of the synaptic vesicles becomes recycled during the stimulation period. It then contains both newly synthesized acetylcholine and a sample of extracellular medium. Recycled vesicles have not incorporated the presynaptic plasma membrane marker acetylcholinesterase. Cisternae or vacuoles are presumably not involved in vesicle recycling. After a subsequent period of recovery (18 h), all vesicular membrane compartments behave like VP1 vesicles on subcellular fractionation and still retain both volume markers. Our results imply that on low-frequency stimulation, synaptic vesicles are directly recycled, equilibrating their luminal contents with the extracellular medium and retaining their membrane identity and capability to accumulate acetylcholine.  相似文献   

5.
S R Pfeffer  R B Kelly 《Cell》1985,40(4):949-957
Coated vesicles have been purified in the past on the basis of their remarkably homogeneous structure, not their function. We have succeeded in isolating two subpopulations of bovine brain coated vesicles that carry specific "cargoes," in this case two synaptic vesicle membrane polypeptides (Mr = 95,000 and 65,000). Monoclonal antibodies that recognize cytoplasmic domains of these polypeptides can penetrate the clathrin coat and recognize them on the outer surface of the coated vesicle membrane. An immunoadsorption technique could therefore be used to fractionate coated vesicles on the basis of their membrane composition. The subpopulations have the normal complement of conventional coated vesicle proteins. Exclusive, however, to the subpopulations that carry synaptic vesicle polypeptides are two new coated vesicle polypeptides (Mr = 38,000 and 29,000).  相似文献   

6.
Calf brain plain synaptic vesicle proteins have been cross-linked with bis[2-(succinimidooxycarbonyloxy)ethyl] sulfone, a homobifunctional, cleavable reagent, as well as with N-hydroxysuccinimidyl 4-azidobenzoate, a photosensitive, heterobifunctional reagent. These results demonstrate the generality of a recent report that synaptic vesicle proteins can be cross-linked, in contrast to a prior report that no cross-linking could be observed. The reagents gave some differences in the proteins that were preferentially cross-linked. A protein at Mr = 173 000, which comigrates with clathrin, is present in the plain synaptic vesicle fraction and appears to be involved in cross-linking. A high degree of association and structural organization of synaptic vesicle proteins is suspected, since extensive cross-linking of most synaptic vesicle proteins with high-molecular-mass proteins, which are probably structural in nature, is observed. A protein with an Mr of 249 000 is specifically cross-linked to a protein of Mr 42 000, probably actin, suggesting that the 249 000-Mr protein may be a spectrin-like molecule. The present results suggest that synaptic vesicles may be organized by a spectrin-like matrix similar to that observed in erythrocytes and other cells.  相似文献   

7.
Phosphorylation of brain synaptic and coated vesicle proteins was stimulated by Ca2+ and calmodulin. As determined by 5-15% sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE), molecular weights (Mr) of the major phosphorylated proteins were 55,000 and 53,000 in synaptic vesicles and 175,000 and 55,000 in coated vesicles. In synaptic vesicles, phosphorylation was inhibited by affinity-purified antibodies raised against a 30,000 Mr protein doublet endogenous to synaptic and coated vesicles. When this doublet, along with clathrin, was extracted from coated vesicles, phosphorylation did not take place, implying that the protein doublet may be closely associated with Ca2+/calmodulin-dependent protein kinase. Affinity-purified antibodies, raised against clathrin used as a control antibody, failed to inhibit Ca2+/calmodulin-dependent phosphorylation in either synaptic or coated vesicles. Immunoelectron cytochemistry revealed that this protein doublet was present in axon terminal synaptic and coated vesicles. Synaptic vesicles also displayed cAMP-dependent kinase activity; coated vesicles did not. The molecular weights of phosphorylated synaptic vesicle proteins in the presence of Mg2+ and cAMP were: 175,000, 100,000, 80,000, 57,000, 55,000, 53,000, 40,000, and 30,000. Based on the different phosphorylation patterns observed in synaptic and coated vesicles, we propose that brain vesicle protein kinase activities may be involved in the regulation of exocytosis and in retrieval of synaptic membrane in presynaptic axon terminals.  相似文献   

8.
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors)-mediated exocytotic release of neurotransmitters is a key process in neuronal communication, controlled by a number of molecular interactions. A synaptic vesicle v-SNARE protein (VAMP2 or synaptobrevin), in association with two plasma membrane t-SNAREs (syntaxin 1 and SNAP25), assemble to form a protein complex that is largely accepted as the minimal membrane fusion machine. Acidification of the synaptic vesicle lumen by the large multi-subunit vacuolar proton pump (V-ATPase) is required for loading with neurotransmitters. Recent data demonstrate a direct interaction between the c-subunit of the V-ATPase and VAMP2 that appears to play a role at a late step in transmitter release. In this review, we examine evidence suggesting that the V0 membrane sector of the V-ATPase not only participates in proton pumping, but plays a second distinct role in neurosecretion, downstream of filling and close to vesicle fusion.  相似文献   

9.
The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl-n-hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal.  相似文献   

10.
Abstract: o-rab3 is an electric ray homologue of low molecular weight GTP-binding proteins thought to be involved in targeting of secretory vesicles to sites of exocytosis. The stimulation-dependent association of o-rab3 with synaptic vesicles was compared with that of the membrane-integral synaptic vesicle protein 2 (SV2). On application of immunoelectron microscopy and the colloidal gold technique, antibodies against either protein labeled the synaptic vesicle membrane compartment. Synaptic vesicles recycled under conditions of low frequency stimulation (0.1 Hz) retained their complement of both SV2 and o-rab3. Isolation of synaptic vesicles by density-gradient centrifugation and subsequent column chromatography yielded no indication of a stimulation-dependent release of o-rab3 from synaptic vesicles. In contrast, multivesicular bodies and vacuoles occasionally observed in the nerve terminals contained SV2 but little if any o-rab3. It is concluded that o-rab3 remains associated with the synaptic vesicle membrane compartment during stimulation-induced cycles of repeated exo- and endocytosis. o-rab3 may be lost once the vesicle enters the prelysosomal pathway.  相似文献   

11.
Synaptic vesicles are key organelles in neurotransmission. Vesicle integral or membrane-associated proteins mediate the various functions the organelle fulfills during its life cycle. These include organelle transport, interaction with the nerve terminal cytoskeleton, uptake and storage of low molecular weight constituents, and the regulated interaction with the pre-synaptic plasma membrane during exo- and endocytosis. Within the past two decades, converging work from several laboratories resulted in the molecular and functional characterization of the proteinaceous inventory of the synaptic vesicle compartment. However, up until recently and due to technical difficulties, it was impossible to screen the entire organelle thoroughly. Recent advances in membrane protein identification and mass spectrometry (MS) have dramatically promoted this field. A comparison of different techniques for elucidating the proteinaceous composition of synaptic vesicles revealed numerous overlaps but also remarkable differences in the protein constituents of the synaptic vesicle compartment, indicating that several protein separation techniques in combination with differing MS approaches are required to identify and characterize the synaptic vesicle proteome. This review highlights the power of various gel separation techniques and MS analyses for the characterization of the proteome of highly purified synaptic vesicles. Furthermore, the newly detected protein assignments to synaptic vesicles, especially those proteins which are new to the inventory of the synaptic vesicle proteome, are critically discussed.  相似文献   

12.
B Wiedenmann  W W Franke 《Cell》1985,41(3):1017-1028
A polypeptide of Mr 38,000 has been identified as a specific component of the membrane of presynaptic vesicles, using the monoclonal antibody SY38. This protein, which is acidic (isoelectric at approximately pH 4.8) and glycosylated, appears to be an integral membrane protein, as suggested by its solubilization with the nonionic detergent Triton X-100 and the finding that the epitope recognized by antibody SY38 is located on the cytoplasmic surface of those vesicles. It is found in presynaptic vesicles of neurons of the brain, spinal cord, and retina as well as at neuromuscular junctions. It is also found in the adrenal medulla. Its occurrence in diverse vertebrate species indicates its stability during evolution. This protein, for which we propose the name synaptophysin*, provides a molecular marker for the presynaptic vesicle membrane and may be involved in synaptic vesicle formation and exocytosis.  相似文献   

13.
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.  相似文献   

14.
QUANTITATIVE ASPECTS OF TRANSMITTER RELEASE   总被引:12,自引:5,他引:7       下载免费PDF全文
The opener-stretcher motor neuron in crayfish makes 50 endings upon each of 1200 muscle fibers. We have calculated the quantal content of junctional potentials produced by individual terminals and by the whole cell at various physiological frequencies. The results show that when the motor neuron is active at 20 impulses/second, it releases 50 quanta/impulse per muscle fiber, or a total of 4.5 x 109 quanta/hr. These figures are similar to those for vertebrate muscles per fiber, but larger for the entire neuron because the opener motor unit is so large. On the basis that the quanta correspond to synaptic vesicles each containing 103–104 molecules of transmitter, the release rate must be around 10-11 mole/hr. This value is within an order of magnitude of the release figures obtained for mammalian neurons by collecting transmitter in perfusates, but it is far lower than the value reported for a crustacean inhibitory neuron. If the membrane materials surrounding each vesicle were lost in the release process, the replacement synthesis would involve 24 mm2 of membrane/hr. We conclude that the metabolic load in terms of transmitter synthesis is probably sustainable, but that the release mechanism must operate in such a way that vesicle membrane materials are neither lost nor incorporated into the terminal membrane.  相似文献   

15.
Synapsin I, a major neuron-specific substrate for cAMP-dependent and Ca2+/calmodulin-dependent protein kinases, associates in in vitro assays with brain integral membrane protein site(s) distinct from secretory vesicles and with the neurofilament Mr = 68,000 subunit. The membrane sites for synapsin involve protein(s) and are likely to have physiological relevance since the binding of 125I-labeled synapsin is abolished by digestion with chymotrypsin, is displaced by unlabeled synapsin, is of high affinity (KD = 10 nM), and has a capacity (42 pmol/mg membrane protein) that is comparable to the amount of synapsin in brain, optimal binding occurs at physiological pH (6.8-7.2) and salt concentrations (50 mM), and synapsin binding to membranes is inhibited by phosphorylation with Ca2+/calmodulin-dependent protein kinase. The brain membrane protein sites for synapsin are not due to synaptic vesicles, since synaptic vesicles do not sediment under the conditions of the binding assay. Association between synapsin and the Mr = 68,000 neurofilament subunit has also been demonstrated. The binding of synapsin with the neurofilament subunit is specific since this binding interaction is saturable, with a 1:1 stoichiometry, the binding involves only certain proteolytically derived domains of synapsin, and is therefore not a simple electrostatic interaction between the basic domains of synapsin and the acidic regions in the neurofilament subunit, and Ca2+/calmodulin-dependent phosphorylation of synapsin inhibits this interaction. Synapsin promotes cross-linking of synaptic vesicles to brain membranes, and these complexes are reduced by phosphorylation of synapsin. This interconnecting function of synapsin may be a general characteristic of synapsin binding, with a membrane (synaptic vesicle or nonsecretory vesicle)-bound synapsin associating with microtubules, neurofilaments, or spectrin.  相似文献   

16.
《The Journal of cell biology》1990,111(5):2041-2052
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral membrane protein of synaptic vesicles, with half-maximal inhibition seen between 10(-8) and 10(-7) M synaptophysin. Because of its affinity for synaptophysin, we named the 36-kD synaptic vesicle-binding protein physophilin (psi nu sigma alpha, greek = bubble, vesicle; psi iota lambda os, greek = friend). Physophilin exhibits an isoelectric point of approximately 7.8, a Stokes radius of 6.6 nm, and an apparent sedimentation coefficient of 5.6 S, pointing to an oligomeric structure of this protein. It is present in synaptic plasma membranes prepared from synaptosomes but not in synaptic vesicles. In solubilization experiments, physophilin behaves as an integral membrane protein. Thus, a putative synaptic plasma membrane protein exhibits a specific interaction with one of the major membrane proteins of synaptic vesicles. This interaction may play a role in docking and/or fusion of synaptic vesicles to the presynaptic plasma membrane.  相似文献   

17.
Uptake of neurotransmitters into synaptic vesicles is driven by the proton gradient established across the vesicle membrane. The acidification of synaptic vesicles, therefore, is a crucial component of vesicle function. Here we present measurements of acidification rate constants from isolated, single synaptic vesicles. Vesicles were purified from mice expressing a fusion protein termed SynaptopHluorin created by the fusion of VAMP/synaptobrevin to the pH-sensitive super-ecliptic green fluorescent protein. We calibrated SynaptopHluorin fluorescence to determine the relationship between fluorescence intensity and internal vesicle pH, and used these values to measure the rate constant of vesicle acidification. We also measured the effects of ATP, glutamate, and chloride on acidification. We report acidification time constants of 500 ms to 1 s. The rate of acidification increased with increasing extravesicular concentrations of ATP and glutamate. These data provide an upper and a lower bound for vesicle acidification and indicate that vesicle readiness can be regulated by changes in energy and transmitter availability.  相似文献   

18.
Murthy M  Garza D  Scheller RH  Schwarz TL 《Neuron》2003,37(3):433-447
The exocyst (Sec6/8) complex is necessary for secretion in yeast and has been postulated to establish polarity by directing vesicle fusion to specific sites along the plasma membrane. The complex may also function in the nervous system, but its precise role is unknown. We have investigated exocyst function in Drosophila with mutations in one member of the complex, sec5. Null alleles die as growth-arrested larvae, whose neuromuscular junctions fail to expand. In culture, neurite outgrowth fails in sec5 mutants once maternal Sec5 is exhausted. Using a trafficking assay, we found impairments in the membrane addition of newly synthesized proteins. In contrast, synaptic vesicle fusion was not impaired. Thus, Sec5 differentiates between two forms of vesicle trafficking: trafficking for cell growth and membrane protein insertion depend on sec5, whereas transmitter secretion does not. In this regard, sec5 differs from the homologs of other yeast exocytosis genes that are required for both neuronal trafficking pathways.  相似文献   

19.
20.
Synaptic vesicle proteins govern all relevant functions of the synaptic vesicle life cycle, including vesicle biogenesis, vesicle transport, uptake and storage of neurotransmitters, and regulated endocytosis and exocytosis. In spite of impressive progress made in the past years, not all known vesicular functions can be assigned to defined protein components, suggesting that the repertoire of synaptic vesicle proteins is still incomplete. We have identified and characterized a novel synaptic vesicle membrane protein of 31 kDa with six putative transmembrane helices that, according to its membrane topology and phylogenetic relation, may function as a vesicular transporter. The vesicular allocation is demonstrated by subcellular fractionation, heterologous expression, immunocytochemical analysis of brain sections and immunoelectron microscopy. The protein is expressed in select brain regions and contained in subpopulations of nerve terminals that immunostain for the vesicular glutamate transporter 1 and the vesicular GABA transporter VGaT (vesicular amino acid transporter) and may attribute specific and as yet undiscovered functions to subsets of glutamatergic and GABAergic synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号