首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We examined the preventive activity of naturally occurring antioxidants against three reactive oxygen species using a protein degradation assay. The hydroxyl, hypochlorite, and peroxynitrite radicals are typical reactive oxygen species generated in human body. Previously, we found that hydrophobic botanical antioxidants exhibited specific antioxidant activity against hydroxyl radicals, whereas anserine and carnosine mixture, purified from chicken extract and vitamin C, exhibited antioxidant activities against hypochlorite and peroxynitrite radicals respectively. Since ethanol, used as a solvent in the experiments, also showed an antioxidant action against the hydroxyl radical, we re-assessed antioxidant activities using aqueous solutions of botanical antioxidants. Among the seven hydrophobic antioxidants examined, ferulic acid exhibited the strongest antioxidant activity against the hydroxyl radical. An antioxidant preparation of anserine-carnosine mixture, vitamin C, and ferulic acid prevented oxidative stress by reactive oxygen species. Loss of deformability in human erythrocytes and protein degradation caused by reactive oxygen species were completely inhibited.  相似文献   

2.
Vitamin E is the major lipid-soluble chain-breaking antioxidant in mammals and plays an important role in normal development and physiology. Deficiency (whether dietary or genetic) results in primarily nervous system pathology, including cerebellar neurodegeneration and progressive ataxia (abnormal gait). However, despite the widely acknowledged antioxidant properties of vitamin E, only a few studies have directly correlated levels of reactive oxygen species with vitamin E availability in animal models. We explored the relationship between vitamin E and reactive oxygen species in two mouse models of vitamin E deficiency: dietary deficiency and a genetic model (tocopherol transfer protein, Ttp-/- mice). Both groups of mice developed nearly complete depletion of alpha-tocopherol (the major tocopherol in vitamin E) in most organs, but not in the brain, which was relatively resistant to loss of alpha-tocopherol. F4-neuroprostanes, an index of lipid peroxidation, were unexpectedly lower in brains of deficient mice compared with controls. In vivo oxidation of dihydroethidium by superoxide radical was also significantly lower in brains of deficient animals. Superoxide production by brain mitochondria isolated from vitamin E-deficient and Ttp-/- mice, measured by electron paramagnetic resonance spectroscopy, demonstrated a biphasic dependence on exogenously added alpha-tocopherol. At low concentrations, alpha-tocopherol enhanced superoxide flux from mitochondria, a response that was reversed at higher concentrations. Here we propose a mechanism, supported by molecular modeling, to explain decreased superoxide production during alpha-tocopherol deficiency and speculate that this could be a beneficial response under conditions of alpha-tocopherol deficiency.  相似文献   

3.
Oxidative stress has been implicated as an important etiologic factor in atherosclerosis and vascular dysfunction. Antioxidants may inhibit atherogenesis and improve vascular function by two different mechanisms. First, lipid-soluble antioxidants present in low-density lipoprotein (LDL), including alpha-tocopherol, and water-soluble antioxidants present in the extracellular fluid of the arterial wall, including ascorbic acid (vitamin C), inhibit LDL oxidation through an LDL-specific antioxidant action. Second, antioxidants present in the cells of the vascular wall decrease cellular production and release of reactive oxygen species (ROS), inhibit endothelial activation (i.e., expression of adhesion molecules and monocyte chemoattractants), and improve the biologic activity of endothelium-derived nitric oxide (EDNO) through a cell- or tissue-specific antioxidant action. alpha-Tocopherol and a number of thiol antioxidants have been shown to decrease adhesion molecule expression and monocyte-endothelial interactions. Vitamin C has been demonstrated to potentiate EDNO activity and normalize vascular function in patients with coronary artery disease and associated risk factors, including hypercholesterolemia, hyperhomocysteinemia, hypertension, diabetes, and smoking.  相似文献   

4.
Selenium is an essential trace element and it is well known that selenium is necessary for cell culture. However, the mechanism underlying the role of selenium in cellular proliferation and survival is still unknown. The present study using Jurkat cells showed that selenium deficiency in a serum-free medium decreased the selenium-dependent enzyme activity (glutathione peroxidases and thioredoxin reductase) within cells and cell viability. To understand the mechanism of this effect of selenium, we examined the effect of other antioxidants, which act by different mechanisms. Vitamin E, a lipid-soluble radical-scavenging antioxidant, completely blocked selenium deficiency-induced cell death, although alpha-tocopherol (biologically the most active form of vitamin E) could not preserve selenium-dependent enzyme activity. Other antioxidants, such as different isoforms and derivatives of vitamin E, BO-653 and deferoxamine mesylate, also exerted an inhibitory effect. However, the water-soluble antioxidants, such as ascorbic acid, N-acetyl cysteine, and glutathione, displayed no such effect. Dichlorodihydrofluorescein (DCF) assay revealed that cellular reactive oxygen species (ROS) increased before cell death, and sodium selenite and alpha-tocopherol inhibited ROS increase in a dose-dependent manner. The generation of lipid hydroperoxides was observed by fluorescence probe diphenyl-1-pyrenylphosphine (DPPP) and HPLC chemiluminescence only in selenium-deficient cells. These results suggest that the ROS, especially lipid hydroperoxides, are involved in the cell death caused by selenium deficiency and that selenium and vitamin E cooperate in the defense against oxidative stress upon cells by detoxifying and inhibiting the formation of lipid hydroperoxides.  相似文献   

5.
The quenching or scavenging effect of non-enzymatic antioxidants against reactive oxygen species (ROS) was studied by comparing the degree of suppression of chemiluminescence (CL) caused by the oxidation of MCLA (methoxylated Cypridina luciferin analogue) by ROS. MCLA-dependent CL caused by O2- was effectively quenched by ascorbic acid, beta-carotene, lycopene and astaxanthin, while it was enhanced by alpha-tocopherol. The CL by 1O2 was quenched effectively by beta-carotene, lycopene and astaxanthin, moderately by ascorbic acid, and slightly by alpha-tocopherol. beta-Carotene and alpha-tocopherol remarkably suppressed the CL when ROS was HO*. The present study revealed that MCLA-dependent CL assay provides a simple and rapid method for the evaluation of antioxidants as a quencher or scavenger against any kind of ROS.  相似文献   

6.
The antioxidant action of carotenoids is believed to involve quenching of singlet oxygen and scavenging of reactive oxygen radicals. However, the exact mechanism by which carotenoids protect cells against oxidative damage, particularly in the presence of other antioxidants, remains to be elucidated. This study was carried out to examine the ability of exogenous zeaxanthin alone and in combination with vitamin E or C, to protect cultured human retinal pigment epithelium cells against oxidative stress. The survival of ARPE-19 cells, subjected to merocyanine 540-mediated photodynamic action, was determined by the MTT test and the content of lipid hydroperoxides in photosensitized cells was analyzed by HPLC with electrochemical detection. We found that zeaxanthin-supplemented cells, in the presence of either alpha-tocopherol or ascorbic acid, were significantly more resistant to photoinduced oxidative stress. Cells with added antioxidants exhibited increased viability and accumulated less lipid hydroperoxides than cells without the antioxidant supplementation. Such a synergistic action of zeaxanthin and vitamin E or C indicates the importance of the antioxidant interaction in efficient protection of cell membranes against oxidative damage induced by photosensitized reactions.  相似文献   

7.
Ultraviolet (UV) radiation is one of the major risk factors of cataractogenesis. UV radiation induced damage to the eye lens is believed to be mediated through reactive oxygen species. Antioxidant defense systems, enzymatic and non-enzymatic, resist this damage. In the present study, the levels of rat lens endogenous antioxidants, L-ascorbic acid, alpha-tocopherol and beta-carotene, have been determined by HPLC upon in vitro UVB irradiation. UVB irradiation for 24 h (300 nm; 100 μW/cm(2)) of three months old rat lens suspended in RPMI medium, leads to 69-89% decrease in endogenous levels of these antioxidants. The addition of ascorbic acid (2 mM), alpha-tocopherol (2.5 μM) or beta-carotene (10 μM), separately to the medium during irradiation significantly prevented the decrease in their endogenous levels, thereby suggesting a protective role for these antioxidant micronutrients against photodamage to the eye lens.  相似文献   

8.
Photodynamic therapy (PDT) is an important clinical approach for cancer treatment. It involves the administration of a photosensitizer, followed by its activation with light and induction of cell death. The underlying mechanism is an increased production of reactive oxygen species (ROS) leading to oxidative stress, which is followed by cell death. However, effectiveness of PDT is limited due to an initiation of endogenous rescue response systems like heme oxygenase-1 (HO-1) in tumor cells. In recent years, consuming of antioxidant supplements has become widespread, but the effect of exogenously applied antioxidants on cancer therapy outcome remains unclear. Thus, this study was aimed to investigate if exogenous antioxidants might decrease ROS-induced cytotoxicity in photodynamic treatment. Lycopene, β-carotene, vitamin C, N-acetylcysteine, trolox, and N-tert-butyl-α-phenylnitrone in different doses were administered to human melanoma cells prior exposure to photodynamic treatment. Supplementation with vitamin C resulted in a significant decrease of the cell death rate, whereas the other tested antioxidants had no effect on cell viability and oxidative stress markers. The simultaneous application of vitamin C with the HO-1 activity inhibitor zinc protoporphyrine IX (ZnPPIX) caused a considerable decrease of photodynamic treatment-induced cytotoxicity compared to ZnPPIX alone. It can be summarized that exogenously applied antioxidants do not have a leading role in the protective response against photodynamic treatment. However, further studies are necessary to investigate more antioxidants and other substances, which might affect the outcome of photodynamic treatment in cancer therapy.  相似文献   

9.
Effects of different inhibitors of lipid peroxidation (LP), such as sulphur-containing oligoquinone hypoxen, natural flavonoid dihydroquercetin (DHQ), and β-ionol, on Ca2+-induced calcium release from rat liver mitochondria (RLM) were investigated during oxidation of various substrates. The hypothesis about interrelation between antioxidant properties and influence of selected substances on spontaneous calcium release from mitochondria was verified. Degree of antioxidant activity of the selected substances was estimated by the inhibition of LP induced by Fe2+/ATP complex in phospholipid emulsion or in rat liver mitochondria (RLM). According to the inhibition efficacy the investigated substances were ordered as follows: β-ionol ≫ hypoxen > DHQ. 50% inhibition of oxygen consumption during LP of phospholipid emulsion was reached in presence of 3.2 ± 0.6 μM of β-ionol, 15.0 ± 1.1 μM of hypoxen, or 19.8 ± 1.7 μM of DHQ. Among the investigated antioxidants hypoxen only decreased spontaneous release of calcium from RLM after calcium accumulation by RLM. The impact of the antioxidants onto calcium current depended on the oxidized substrate. Hypoxen effect was most expressed during the oxidation of NAD-dependent substrate. The direct relationship between the antioxidant activity of the selected antioxidants and their influence on calcium transport in RLM was not revealed. The results indicate that the choice of antiischemic preparations should not only rely on their antioxidant activities.  相似文献   

10.
Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.  相似文献   

11.
Production of oxygen radicals by stimulated phagocytes followed by surfactant lipid peroxidation (LPO) and loss of surfactant function have all been implicated in the pathogenesis of acute lung injury. We studied the interactions between natural lung surfactant (Curosurf) and neutrophils in vitro , and compared various antioxidants; (superoxide dismutase (SOD), vitamin E, vitamin C, ebselen and melatonin), or combinations of them in duplicate and triplicate regarding their ability to decrease superoxide production and the peroxidation level of surfactant caused by activated phagocytes. The superoxide production of neutrophils activated by Candida albicans was measured with the nitroblue tetrazolium (NBT) test. The subsequent LPO was estimated as the content of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE). We found that lung surfactant decreased the superoxide production by activated neutrophils (29.7%) and that Curosurf was peroxidized with elevated MDA/4-HNE values. With supplements of antioxidants (except vitamin C), superoxide radical production and the surfactant LPO level fell in a dose-dependent manner. The protective effect of the antioxidants differed in each test. SOD had a slight effect in both tests. The findings with vitamin E, melatonin and ebselen were similar. The best combination was that of a natural and a synthetic antioxidant (melatonin-ebselen) with a 60% decrease in comparison to the corresponding control. These findings suggest that antioxidants, particularly in combination, prevent LPO of lung surfactant.  相似文献   

12.
Production of oxygen radicals by stimulated phagocytes followed by surfactant lipid peroxidation (LPO) and loss of surfactant function have all been implicated in the pathogenesis of acute lung injury. We studied the interactions between natural lung surfactant (Curosurf) and neutrophils in vitro, and compared various antioxidants; (superoxide dismutase (SOD), vitamin E, vitamin C, ebselen and melatonin), or combinations of them in duplicate and triplicate regarding their ability to decrease superoxide production and the peroxidation level of surfactant caused by activated phagocytes. The superoxide production of neutrophils activated by Candida albicans was measured with the nitroblue tetrazolium (NBT) test. The subsequent LPO was estimated as the content of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE). We found that lung surfactant decreased the superoxide production by activated neutrophils (29.7%) and that Curosurf was peroxidized with elevated MDA/4-HNE values. With supplements of antioxidants (except vitamin C), superoxide radical production and the surfactant LPO level fell in a dose-dependent manner. The protective effect of the antioxidants differed in each test. SOD had a slight effect in both tests. The findings with vitamin E, melatonin and ebselen were similar. The best combination was that of a natural and a synthetic antioxidant (melatonin-ebselen) with a 60% decrease in comparison to the corresponding control. These findings suggest that antioxidants, particularly in combination, prevent LPO of lung surfactant.  相似文献   

13.
BACKGROUND: Rheumatoid arthritis (RA) is a prevalent and debilitating disease that affects the joints. Infiltration of blood-derived cells in the affected joints upon activation generate reactive oxygen/nitrogen species, resulting in an oxidative stress. One approach to counteract this oxidative stress is the use of antioxidants as therapeutic agents. OBJECTIVES: Kalpaamruthaa (KA), a modified indigenous Siddha preparation constituting Semecarpus anacardium nut milk extract (SA), Emblica officinalis (EO) and honey was evaluated for its synergistic antioxidant potential in adjuvant induced arthritic rats than sole SA treatment. MATERIALS AND METHODS: Levels/activities of reactive oxygen species (ROS)/reactive nitrogen species (RNS), myeloperoxidase, lipid peroxide and enzymic and non-enzymic antioxidants were determined in control, arthritis induced, SA and KA treated (150 mg/kg b.wt.) animals. RESULTS AND CONCLUSION: The levels/activities of ROS/RNS, myeloperoxidase and lipid peroxide were increased significantly (p<0.05) and the activities of enzymic and non-enzymic antioxidants were in turn decreased in arthritic rats, whereas these changes were reverted to near normal levels upon SA and KA treatment. KA showed an enhanced antioxidant potential than sole treatment of SA in adjuvant induced arthritic rats. KA via enhancing the antioxidant status in adjuvant induced arthritic rats than sole SA treatment proves to be an important therapeutic modality in the management of RA and thereby instituting the role of oxidative stress in the clinical manifestation of the disease RA. The profound antioxidant efficacy of KA than SA alone might be due to the synergistic action of the polyphenols such as flavonoids, tannins and other compounds such as vitamin C and hydroxycinnamates present in KA.  相似文献   

14.
Reactive free radicals contained in cigarette smoke (CS) and compromised phagocytic antimicrobial activities including those of polymorphonuclear leukocytes (PMNs) have been implicated in the pathogenesis of severe CS-related pulmonary disorders. In CS-exposed buffer solutions, O2-. was the predominant generated reactive oxygen species, as demonstrated by lucigenin-amplified chemiluminescence and electron spin resonance (ESR) spin-trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO). When PMNs were incubated in this buffer, phorbol 12-myristate 13-acetate (PMA)-stimulated active oxygen production and coupled O2 consumption were strongly impaired without appreciably affecting PMN viability (1-min exposure inhibited active oxygen production by 75%). Superoxide dismutase (SOD) totally protected and an iron chelator, diethylenetriaminepentaacetic acid (DETAPAC), also protected the CS-exposed PMNs, suggesting that generated O2-. was an initiating factor in the impairment and OH. generation was a subsequent injurious factor. Pretreatment of PMNs with antioxidants such as alpha-tocopherol and dihydrolipoic acid (DHLA) was partially protective. The results suggest that (i) O2-. is probably generated in the upper and lower respiratory tract lining fluid when they come in contact with CS; (ii) such generated O2-. can primarily impair PMN capabilities to generate reactive oxygen species; and (iii) since these effects may contribute to the pathogenesis of CS-related lung diseases, prior supplementation with antioxidants such as alpha-tocopherol or DHLA might be successful in preventing these deleterious effects.  相似文献   

15.
Nicotinamide (vitamin B3) an endogenous metabolite, showed significant inhibition of oxidative damage induced by reactive oxygen species (ROS) generated by ascorbate-Fe2+ and photosensitization systems in rat brain mitochondria. It protected against both protein oxidation and lipid peroxidation, at millimolar concentrations. Inhibition was more pronounced against oxidation of proteins than peroxidation of lipids. Chemically related endogenous compounds, tryptophan and isonicotinic acid, showed comparable inhibitory properties. The protective effect observed, at biologically relevant concentrations, with nicotinamide was more than that of the endogenous antioxidants ascorbic acid and alpha-tocopherol. Hence our studies suggest that nicotinamide (vitamin B3) can be considered as a potent antioxidant capable of protecting the cellular membranes in brain, which is highly susceptible to prooxidants, against oxidative damage induced by ROS.  相似文献   

16.
Various neurodegenerative disorders and syndromes are associated with oxidative stress. The deleterious consequences of excessive oxidations and the pathophysiological role of reactive oxygen species (ROS) have been intensively studied in Alzheimer's disease (AD). Neuronal cell dysfunction and oxidative cell death caused by the AD-associated amyloid beta protein may causally contribute to the pathogenesis of AD. Antioxidants that prevent the detrimental consequences of ROS are consequently considered to be a promising approach to neuroprotection. While there is ample experimental evidence demonstrating neuroprotective activities of antioxidants in vitro, the clinical evidence that antioxidant compounds act as protective drugs is still relatively scarce. Nevertheless, antioxidants constitute a major part of the panel of clinical and experimental drugs that are currently considered for AD prevention and therapy. Here, focus is put mainly on phenolic antioxidant structures that belong to the class of direct antioxidants. Experimental and clinical evidence for the neuroprotective potential of alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) is shortly summarized and an outlook is given on possible novel antioxidant lead structures with improved pharmacological features.  相似文献   

17.
Environmental stresses trigger a wide variety of plant responses, ranging from altered gene expression to changes in cellular metabolism and growth. A plethora of plant reactions exist to circumvent the potentially harmful effects caused by light, drought, salinity, extreme temperatures, pathogen infections and other stresses. Alpha-tocopherol is the major vitamin E compound found in leaf chloroplasts, where it is located in the chloroplast envelope, thylakoid membranes and plastoglobuli. This antioxidant deactivates photosynthesis-derived reactive oxygen species (mainly 1O2 and OH), and prevents the propagation of lipid peroxidation by scavenging lipid peroxyl radicals in thylakoid membranes. Alpha-tocopherol levels change differentially in response to environmental constraints, depending on the magnitude of the stress and species-sensitivity to stress. Changes in alpha-tocopherol levels result from altered expression of pathway-related genes, degradation and recycling, and it is generally assumed that increases of alpha-tocopherol contribute to plant stress tolerance, while decreased levels favor oxidative damage. Recent studies indicate that compensatory mechanisms exist to afford adequate protection to the photosynthetic apparatus in the absence of alpha-tocopherol, and provide further evidence that it is the whole set of antioxidant defenses (ascorbate, glutathione, carotenoids, tocopherols and other isoprenoids, flavonoids and enzymatic antioxidants) rather than a single antioxidant, which helps plants to withstand environmental stress.  相似文献   

18.
Strong evidence indicates that reactive oxygen species (ROS) play an important role in the initiation as well as the promotion phase of carcinogenesis. Studies support the role of ROS in cancer, in part, by showing that dietary antioxidants act as cancer-preventive agents. Although results are promising, the research on this topic is still controversial. Thus, the aim of this study was to investigate whether vitamins C, E and pequi oil can, individually, provide prevention and/or be used afterward as an adjuvant in cancer therapy. Ehrlich solid tumor-bearing mice received antioxidant as follows: before tumor inoculation, before and after tumor inoculation (continuous administration), and after tumor inoculation; morphometric analyses of tumor, genotoxicity and hematology were then carried out. Antioxidant administrations before tumor inoculation effectively inhibited its growth in the three experimental protocols, but administrations after the tumor's appearance accelerated tumor growth and favored metastases. Continuous administration of pequi oil inhibited the tumor's growth, while the same protocol with vitamins E and C accelerated it, favoring metastasis and increasing oxidative stress on erythrocytes. Except for continuous administration with vitamin E, the development of ascites tumor metastases was linked with increased inflammation. Results suggest that the efficiency and applicability of antioxidants in the medical clinic can depend not only on the nature of the antioxidant, the type and stage of cancer being treated and the prevailing oxygen partial pressure in the tissues, but also on the type of antioxidant therapy chosen.  相似文献   

19.
Multiple reactive oxygen/nitrogen species induce oxidative stress. Mammals have evolved with an elaborate defense network against oxidative stress, in which multiple antioxidant compounds and enzymes with different functions exert their respective roles. Radical scavenging is one of the essential roles of antioxidants and vitamin E is the most abundant and important lipophilic radical-scavenging antioxidant in vivo. The kinetic data and physiological molar ratio of vitamin E to substrates show that the peroxyl radicals are the only radicals that vitamin E can scavenge to break chain propagation efficiently and that vitamin E is unable to act as a potent scavenger of hydroxyl, alkoxyl, nitrogen dioxide, and thiyl radicals in vivo. The preventive effect of vitamin E against the oxidation mediated by nonradical oxidants such as hypochlorite, singlet oxygen, ozone, and enzymes may be limited in vivo. The synergistic interaction of vitamin E and vitamin C is effective for enhancing the antioxidant capacity of vitamin E. The in vitro and in vivo evidence of the function of vitamin E as a peroxyl radical-scavenging antioxidant and inhibitor of lipid peroxidation is presented.  相似文献   

20.
The antioxidant capacity of the avian intestinal mucosa is potentially important in protecting the gut wall from the harmful actions of reactive oxygen species originating from the diet, mucosal metabolism and the inflammatory response to enteric microbes. To assess this capacity, we determined the total lipid-soluble and water-soluble antioxidant activities of mucosal extracts, using tissue from different parts of the intestinal tract of the chicken. The lipid-soluble antioxidants, vitamin E and carotenoids, were also measured in the same samples. Total lipid-soluble antioxidant activity was highest in mucosa from the duodenum followed by the jejunum, with much lower activities in the ileum, ceca and colon. Total water-soluble antioxidant activity of the mucosa was at least an order of magnitude greater than the lipid-soluble activity under the assay conditions and did not differ significantly among the different parts of the intestinal tract. High concentrations of vitamin E were present in the mucosa of the duodenum and jejunum, with a trend to lower levels in the ileum and ceca, and significantly less in the colon. Similarly, the mucosa of the duodenum and jejunum contained the highest concentrations of carotenoids, with much lower levels in the ileum and colon. The different isoforms of vitamin E were absorbed from the digesta by the mucosa without any major selectivity. However, the liver was greatly enriched with alpha-tocopherol over the other isoforms, indicating a high degree of discrimination by this tissue. The results indicate major differences in the relative contributions of lipid- and water-soluble antioxidants in the mucosa along the different parts of the intestinal tract, most likely reflecting the sites of vitamin E and carotenoid absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号