首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme activity measurement showed that L-ascorbic acid (vitamin C (Vc)) competitively inhibits the hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. The complex crystal structure of this enzyme with Vc was determined at 2.0 A resolution. One Vc molecule was found to bind to the active site of the enzyme. The Vc carboxyl group provides the negative charges that lead the molecule into the highly positively charged cleft of the enzyme. The Vc ring system forms hydrophobic interactions with the side chain of Trp-292, which is one of the aromatic patch residues of this enzyme responsible for the selection of the cleavage sites on the substrate chain. The binding of Vc inhibits the substrate binding at hyaluronan 1, 2, and 3 (HA1, HA2, and HA3) catalytic positions. The high concentration of Vc in human tissues probably provides a low level of natural resistance to the pneumococcal invasion. This is the first time that Vc the direct inhibition on the bacterial "spreading factor" was reported, and Vc is also the first chemical that has been shown experimentally to have an inhibitory effect on bacterial hyaluronate lyase. These studies also highlight the possible structural requirement for the design of a stronger inhibitor of bacterial hyaluronate lyase.  相似文献   

2.
The extracellular hyaluronidase gene (hylA) of Streptococcus pyogenes   总被引:2,自引:0,他引:2  
Group A streptococci produce an extracellular hyaluronidase (hyaluronate lyase) which may be associated with the spread of the organism during infection. The gene for this hyaluronidase (hylA) encodes an 868 amino acid protein with a molecular size of 99636 Da. Cleavage of the proposed signal peptide results in an extracellular protein of 95941 Da. Comparison with other bacterial hyaluronidases indicates strong similarities to the genes from Streptococcus pneumoniae, Streptococcus agalactiae and Staphylococcus aureus. A region internal to the hylA gene was amplified from all 175 strains of Streptococcus pyogenes tested suggesting a widespread distribution of the gene.  相似文献   

3.
Streptococcus agalactiae hyaluronate lyase degrades primarily hyaluronan, the main polysaccharide component of the host connective tissues, into unsaturated disaccharide units as the end product. Such function of the enzyme destroys the normal connective tissue structure of the host and exposes the tissue cells to various bacterial toxins. The crystal structure of hexasaccharide hyaluronan complex with the S. agalactiae hyaluronate lyase was determined at 2.2 A resolution; the mechanism of the catalytic process, including the identification of specific residues involved in the degradation of hyaluronan, was clearly identified. The enzyme is composed structurally and functionally from two distinct domains, an alpha-helical alpha-domain and a beta-sheet beta-domain. The flexibility of the protein was investigated by comparing the crystal structures of the S. agalactiae and the Streptococcus pneumoniae enzymes, and by using essential dynamics analyses of CONCOORD computer simulations. These revealed important modes of flexibility, which could be related to the protein function. First, a rotation/twist of the alpha-domain relative to the beta-domain is potentially related to the mechanism of processivity of the enzyme; this twist motion likely facilitates shifting of the ligand along the catalytic site cleft in order to reposition it to be ready for further cleavage. Second, a movement of the alpha- and beta-domains with respect to each other was found to contribute to a change in electrostatic characteristics of the enzyme and appears to facilitate binding of the negatively charged hyaluronan ligand. Third, an opening/closing of the substrate binding cleft brings a catalytic histidine closer to the cleavable substrate beta1,4-glycosidic bond. This opening/closing mode also reflects the main conformational difference between the crystal structures of the S. agalactiae and the S. pneumoniae hyaluronate lyases.  相似文献   

4.
Hyaluronic acid (HA) was treated with hyaluronate lyase (GBS HA lyase, E.C. 4.2.2.1, from Streptococcus agalactiae strain 4755), and the products have been analyzed by capillary electrophoresis (CE-UV and online CE-ESIMS), gel-permeation chromatography (GPC) and viscosimetric measurements. The resulting electropherograms showed that the enzyme produced a mixture of oligosaccharides with a 4,5-unsaturated uronic acid nonreducing terminus. More exhaustive degradation of HA led to increasing amounts of di-, tetra-, hexa-, octa- and decasaccharides. Using CE, linear relationships were found between peak area of the observed oligosaccharides and reaction time. Determination of viscosity at different stages of reaction yielded an initial rapid decrease following Michaelis-Menten theory. A reaction time-dependent change in the elution position of the HA peak due to partial digestion of HA with GBS hyaluronate lyase has been observed by GPC. These results indicated that the HA lyase under investigation is an eliminase that acts in a nonprocessive endolytic manner, as at all stages of digestion a mixture of oligosaccharides of different size were found. For GBS HA lyase from Streptococcus agalactiae strain 3502, previously published findings reported an action pattern that involves an initial random endolytic cleavage followed by rapid exolytic and processive release of unsaturated disaccharides. Our results suggest that differences between the two enzymes from distinct S. agalactiae strains (GBS strains 4755 and 3502) have to be considered.  相似文献   

5.
Kinetic properties of Streptococcus pneumoniae hyaluronate lyase   总被引:1,自引:0,他引:1  
Streptococcus pneumoniae hyaluronate lyase is a surface antigen of this bacterial pathogen, which causes significant mortality and morbidity in human populations worldwide. The primary function of this enzyme is the degradation of hyaluronan, a major component of the extracellular matrix of the tissues of practically all vertebrates. The enzyme uses a processive mode of action to degrade hyaluronan to a final product, an unsaturated disaccharide hyaluronan unit. This catalysis proceeds via a five-step proton acceptance and donation mechanism that includes substrate binding, catalysis, release of the disaccharide product, translocation of the remaining hyaluronan substrate, and proton exchange with microenvironment. Based on the analysis of the three-dimensional structure of the native enzyme and its complexes with hexasaccharide substrate and disaccharide product, several residues have been chosen for mutation studies. These mutated residues included the catalytic residues Asn349, His399, Tyr408, and residues responsible for substrate binding and translocation, Arg243 and Asn580. The comparison of the kinetic properties of the wild-type with the mutant enzymes allowed for the characterization of every mutant and the correlation of the kinetic properties of the enzyme with its structure. The comparison of the wild-type hyaluronate lyase with other polysaccharide-degrading enzymes, the hydrolases endonuclease and glucoamylase, shows striking similarity of K(m)s for all of these different enzymes.  相似文献   

6.
The aim of this study was to establish an identification method for the anginosus group within the genus Streptococcus by polymerase chain reaction (PCR). Using a primer pair based on the group-specific sequences of penicillin-binding protein 2B (pbp2b) gene, a 275-bp fragment was amplified from each species in the group but no size-matched products were obtained in other streptococci. Further identification in the species or subspecies level was possible by a multiplex PCR with primers for the 16S ribosomal RNA gene of Streptococcus anginosus, the hyaluronate lyase genes both of Streptococcus intermedius and Streptococcus constellatus subsp. constellatus, and the intermedilysin (ily) gene of S. intermedius. In the case ofStreptococcus constellatus subsp. pharyngis, the amplified fragment from the S. intermedius-type hyaluronate lyase gene was obtained, while that from the ily gene was not. These results also indicate that two different hyaluronate lyase genes are distributed among the anginosus group.  相似文献   

7.
Rigden DJ  Jedrzejas MJ 《Proteins》2003,52(2):203-211
Hyaluronate lyase enzymes degrade hyaluronan, the main polysaccharide component of the connective tissues of higher animals, thereby destroying the normal connective tissue structure and exposing the host tissue cells to various endo- and exogenous factors, including bacterial toxins. The 3D crystal structures of functionally active but truncated Streptococcus pneumoniae and S. agalactiae hyaluronate lyases, along with their substrate and product complexes, have been determined. The enzymes are multidomain proteins with helical barrel-like catalytic domains and two types of beta-sheet domains. Here, through genome-based bioinformatics studies we identify an additional beta-sheet domain present in the most N-terminal part of streptococcal hyaluronate lyases. Fold recognition and modeling studies show that the domain is structurally similar to carbohydrate binding modules and is therefore likely to be directly involved in hyaluronan binding. Likely carbohydrate binding residues were identified and electrostatic complementarity of the hyaluronate lyase domain with hyaluronan demonstrated. The newly identified presumed hyaluronan binding domain likely improves catalytic efficiency by colocalizing the enzyme and its substrate. Other possible functions are discussed. Two contacting aromatic residues are conserved in the hydrophobic core of the hyaluronate lyase domain and in many, perhaps all, families in the superfamily in which they may be placed. This observation may help the identification and classification of other carbohydrate binding modules.  相似文献   

8.
Xanthan lyase, a member of polysaccharide lyase family 8, is a key enzyme for complete depolymerization of a bacterial heteropolysaccharide, xanthan, in Bacillus sp. GL1. The enzyme acts exolytically on the side chains of the polysaccharide. The x-ray crystallographic structure of xanthan lyase was determined by the multiple isomorphous replacement method. The crystal structures of xanthan lyase and its complex with the product (pyruvylated mannose) were refined at 2.3 and 2.4 A resolution with final R-factors of 17.5 and 16.9%, respectively. The refined structure of the product-free enzyme comprises 752 amino acid residues, 248 water molecules, and one calcium ion. The enzyme consists of N-terminal alpha-helical and C-terminal beta-sheet domains, which constitute incomplete alpha(5)/alpha(5)-barrel and anti-parallel beta-sheet structures, respectively. A deep cleft is located in the N-terminal alpha-helical domain facing the interface between the two domains. Although the overall structure of the enzyme is basically the same as that of the family 8 lyases for hyaluronate and chondroitin AC, significant differences were observed in the loop structure over the cleft. The crystal structure of the xanthan lyase complexed with pyruvylated mannose indicates that the sugar-binding site is located in the deep cleft, where aromatic and positively charged amino acid residues are involved in the binding. The Arg(313) and Tyr(315) residues in the loop from the N-terminal domain and the Arg(612) residue in the loop from the C-terminal domain directly bind to the pyruvate moiety of the product through the formation of hydrogen bonds, thus determining the substrate specificity of the enzyme.  相似文献   

9.
Hyaluronate lyase enzymes degrade hyaluronan, the main polysaccharide component of the host connective tissues, predominantly into unsaturated disaccharide units, thereby destroying the normal connective tissue structure and exposing the tissue cells to various endo- and exogenous factors, including bacterial toxins. The crystal structures of Streptococcus pneumoniae hyaluronate lyase with tetra- and hexasaccharide hyaluronan substrates bound in the active site were determined at 1.52- and 2.0-A resolution, respectively. Hexasaccharide is the longest substrate segment that binds entirely within the active site of these enzymes. The enzyme residues responsible for substrate binding, positioning, catalysis, and product release were thereby identified and their specific roles characterized. The involvement of three residues in catalysis, Asn(349), His(399), and Tyr(408), is confirmed, and the details of proton acceptance and donation within the catalytic machinery are described. The mechanism of processivity of the enzyme is analyzed. The flexibility (allosteric) behavior of the enzyme may be understood in terms of the results of flexibility analysis of this protein, which identified two modes of motion that are also proposed to be involved in the hyaluronan degradation process. The first motion describes an opening and closing of the catalytic cleft located between the alpha- and beta-domains. The second motion demonstrates the mobility of a binding cleft, which may facilitate the binding of the negatively charged hyaluronan to the enzyme.  相似文献   

10.
Streptococcus pneumoniae hyaluronate lyase (spnHL) is a pathogenic bacterial spreading factor and cleaves hyaluronan, an important constituent of the extra- cellular matrix of connective tissues, through an enzymatic beta-elimination process, different from the hyaluronan degradation by hydrolases in animals. The mechanism of hyaluronan binding and degradation was proposed based on the 1.56 A resolution crystal structure, substrate modeling and mutagenesis studies on spnHL. Five mutants, R243V, N349A, H399A, Y408F and N580G, were constructed and their activities confirmed our mechanism hypothesis. The important roles of Tyr408, Asn349 and His399 in enzyme catalysis were proposed, explained and confirmed by mutant studies. The remaining weak enzymatic activity of the H399A mutant, the role of the free carboxylate group on the glucuronate residue, the enzymatic behavior on chondroitin and chondroitin sulfate, and the small activity increase in the N580G mutant were explained based on this mechanism. A possible function of the C-terminal beta-sheet domain is to modulate enzyme activity through binding to calcium ions.  相似文献   

11.
Hyaluronidases are enzymes that degrade hyaluronan, an important component of the extracellular matrix. The mammalian hyaluronidases are considered to be involved in many (patho)physiological processes like fertilization, tumor growth, and metastasis. Bacterial hyaluronidases, also termed hyaluronate lyases, contribute to the spreading of microorganisms in tissues. Such roles for hyaluronidases suggest that inhibitors could be useful pharmacological tools. Potent and selective inhibitors are not known to date, although L-ascorbic acid has been reported to be a weak inhibitor of Streptococcus pneumoniae hyaluronate lyase (SpnHL). The x-ray structure of SpnHL complexed with L-ascorbic acid has been elucidated suggesting that additional hydrophobic interactions might increase inhibitory activity. Here we show that L-ascorbic acid 6-hexadecanoate (Vcpal) is a potent inhibitor of both streptococcal and bovine testicular hyaluronidase (BTH). Vcpal showed strong inhibition of Streptococcus agalactiae hyaluronate lyase with an IC(50) of 4 microM and weaker inhibition of SpnHL and BTH with IC(50) values of 100 and 56 microM, respectively. To date, Vcpal has proved to be one of the most potent inhibitors of hyaluronidase. We also determined the x-ray structure of the SpnHL-Vcpal complex and confirmed the hypothesis that additional hydrophobic interactions with Phe-343, His-399, and Thr-400 in the active site led to increased inhibition. A homology structural model of BTH was also generated to suggest binding modes of Vcpal to this hyaluronidase. The long alkyl chain seemed to interact with an extended, hydrophobic channel formed by mostly conserved amino acids Ala-84, Leu-91, Tyr-93, Tyr-220, and Leu-344 in BTH.  相似文献   

12.
Although Streptococcus suis is an economically important pathogen of pigs and an occasional cause of zoonotic infections of humans knowledge of crucial virulence factors, and as a consequence targets for therapeutic or prophylactic intervention, remains limited. Here we describe a detailed study of the distribution, diversity, and in vitro expression of hyaluronate lyase, a protein implicated as a virulence factor of many mucosal pathogens. The gene encoding hyaluronate lyase, hyl, was present in all 309 bona fide S. suis isolates examined representing diverse serotypes, geographic sources, and clinical backgrounds. Examination of the genetic diversity of hyl by RFLP and sequence analysis indicated a pattern of diversity shared by many gram-positive surface proteins with a variable 5' region encoding the most distal cell surface-exposed regions of the protein and a much more conserved 3' region encoding domains more closely associated with the bacterial cell. Variation occurs by several mechanisms, including the accumulation of point mutations and deletion and insertion events, and there is clear evidence that genetic recombination has contributed to molecular variation in this gene. Despite the ubiquitous presence of hyl, the corresponding enzyme activity was detected in fewer than 30% of the 309 isolates. In several cases this lack of activity correlates with the presence of mutations (either sequence duplications or point mutations) within hyl that result in a truncated polypeptide. There is a striking absence of hyaluronate lyase activity in a large majority of isolates from classic S. suis invasive disease, indicating that this protein is probably not a crucial virulence factor, although activity is present in significantly higher numbers of isolates associated with pneumonia.  相似文献   

13.
The bacterium Bacillus sp. GL1 assimilates two kinds of heteropolysaccharides, gellan and xanthan, by using extracellular gellan and xanthan lyases, respectively, and produces unsaturated saccharides as the first degradation products. A novel unsaturated glucuronyl hydrolase (glycuronidase), which was induced in the bacterial cells grown on either gellan or xanthan, was found to act on the tetrasaccharide of unsaturated glucuronyl-glucosyl-rhamnosyl-glucose produced from gellan by gellan lyase, and the enzyme and its gene were isolated from gellan-grown cells. The nucleotide sequence showed that the gene contained an ORF consisting of 1131 base pairs coding a polypeptide with a molecular weight of 42,859. The purified enzyme was a monomer with a molecular mass of 42 kDa and was most active at pH 6.0 and 45 degrees C. Because the enzyme can act not only on the gellan-degrading product by gellan lyase, but also on unsaturated chondroitin and hyaluronate disaccharides produced by chondroitin and hyaluronate lyases, respectively, it is considered that the unsaturated glucuronyl hydrolase plays specific and ubiquitous roles in the degradation of oligosaccharides with unsaturated uronic acid at the nonreducing terminal produced by polysaccharide lyases.  相似文献   

14.
Streptococcus pneumoniae hyaluronate lyase is a surface enzyme of this Gram-positive bacterium. The enzyme degrades hyaluronan and chondroitin/chondroitin sulfates by cleaving the beta1,4-glycosidic linkage between the glycan units of these polymeric substrates. This degradation helps spreading of this bacterial organism throughout the host tissues and facilitates the disease process caused by pneumococci. The mechanism of this degradative process is based on beta-elimination, is termed proton acceptance and donation, and involves selected residues of a well defined catalytic site of the enzyme. The degradation of hyaluronan alone is thought to proceed through a processive mode of action. The structures of complexes between the enzyme and chondroitin as well as chondroitin sulfate disaccharides allowed for the first detailed insights into these interactions and the mechanism of action on chondroitins. This degradation of chondroitin/chondroitin sulfates is nonprocessive and is selective for the chondroitin sulfates only with certain sulfation patterns. Chondroitin sulfation at the 4-position on the nonreducing site of the linkage to be cleaved or 2-sulfation prevent degradation due to steric clashes with the enzyme. Evolutionary studies suggest that hyaluronate lyases evolved from chondroitin lyases and still retained chondroitin/chondroitin sulfate degradation abilities while being specialized in the degradation of hyaluronan. The more efficient processive degradation mechanism has come to be preferred for the unsulfated substrate hyaluronan.  相似文献   

15.
Bacterial enzymatic degradation of glycosaminoglycans such as hyaluronan and chondroitin is facilitated by polysaccharide lyases. Family 8 polysaccharide lyase (PL8) enzymes contain at least two domains: one predominantly composed of α-helices, the α-domain, and another predominantly composed of β-sheets, the β-domain. Simulation flexibility analyses indicate that processive exolytic cleavage of hyaluronan, by PL8 hyaluronate lyases, is likely to involve an interdomain shift, resulting in the opening/closing of the substrate-binding cleft between the α- and β-domains, facilitating substrate translocation. Here, the Streptomyces coelicolor A3(2) PL8 enzyme was recombinantly expressed in and purified from Escherichia coli and biochemically characterized as a hyaluronate lyase. By using X-ray crystallography its structure was solved in complex with hyaluronan and chondroitin disaccharides. These findings show key catalytic interactions made by the different substrates, and on comparison with all other PL8 structures reveals that the substrate-binding cleft of the S. coelicolor enzyme is highly occluded. A third structure of the enzyme, harboring a mutation of the catalytic tyrosine, created via site-directed mutagenesis, interestingly revealed an interdomain shift that resulted in the opening of the substrate-binding cleft. These results add further support to the proposed processive mechanism of action of PL8 hyaluronate lyases and may indicate that the mechanism of action is likely to be universally used by PL8 hyaluronate lyases.  相似文献   

16.
Heparinase II depolymerizes heparin and heparan sulfate glycosaminoglycans, yielding unsaturated oligosaccharide products through an elimination degradation mechanism. This enzyme cleaves the oligosaccharide chain on the nonreducing end of either glucuronic or iduronic acid, sharing this characteristic with a chondroitin ABC lyase. We have determined the first structure of a heparin-degrading lyase, that of heparinase II from Pedobacter heparinus (formerly Flavobacterium heparinum), in a ligand-free state at 2.15 A resolution and in complex with a disaccharide product of heparin degradation at 2.30 A resolution. The protein is composed of three domains: an N-terminal alpha-helical domain, a central two-layered beta-sheet domain, and a C-terminal domain forming a two-layered beta-sheet. Heparinase II shows overall structural similarities to the polysaccharide lyase family 8 (PL8) enzymes chondroitin AC lyase and hyaluronate lyase. In contrast to PL8 enzymes, however, heparinase II forms stable dimers, with the two active sites formed independently within each monomer. The structure of the N-terminal domain of heparinase II is also similar to that of alginate lyases from the PL5 family. A Zn2+ ion is bound within the central domain and plays an essential structural role in the stabilization of a loop forming one wall of the substrate-binding site. The disaccharide binds in a long, deep canyon formed at the top of the N-terminal domain and by loops extending from the central domain. Based on structural comparison with the lyases from the PL5 and PL8 families having bound substrates or products, the disaccharide found in heparinase II occupies the "+1" and "+2" subsites. The structure of the enzyme-product complex, combined with data from previously characterized mutations, allows us to propose a putative chemical mechanism of heparin and heparan-sulfate degradation.  相似文献   

17.
Streptococcus agalactiae hyaluronate lyase is a virulence factor that helps this pathogen to break through the biophysical barrier of the host tissues by the enzymatic degradation of hyaluronan and certain chondroitin sulfates at beta-1,4 glycosidic linkages. Crystal structures of the native enzyme and the enzyme-product complex were determined at 2.1- and 2.2-A resolutions, respectively. An elongated cleft transversing the middle of the molecule has been identified as the substrate-binding place. Two product molecules of hyaluronan degradation were observed bound to the cleft. The enzyme catalytic site was identified to comprise three residues: His(479), Tyr(488), and Asn(429). The highly positively charged cleft facilitates the binding of the negatively charged polymeric substrate chain. The matching between the aromatic patch of the enzyme and the hydrophobic patch of the substrate chain anchors the substrate chain into degradation position. A pair of proton exchanges between the enzyme and the substrate results in the cleavage of the beta-1,4 glycosidic linkage of the substrate chain and the unsaturation of the product. Phe(423) likely determines the size of the product at the product release side of the catalytic region. Hyaluronan chain is processively degraded from the reducing end toward the nonreducing end. The unsulfated or 6-sulfated regions of chondroitin sulfate can also be degraded in the same manner as hyaluronan.  相似文献   

18.
Pathogenesis of neonatal Streptococcus agalactiae infections   总被引:6,自引:0,他引:6  
Streptococcus agalactiae is an important human pathogen causing severe neonatal infections. During the course of infection, S. agalactiae colonizes and invades a number of different host compartments. Bacterial molecules including the polysaccharide capsule, the hemolysin, the C5a peptidase, the C-proteins, the hyaluronate lyase and a number of unknown bacterial components determine the interaction with host tissues. This review summarizes our current knowledge about these interactions.  相似文献   

19.
Streptococcus pneumoniae hyaluronate lyase is a surface antigen of this Gram-positive human bacterial pathogen. The primary function of this enzyme is the degradation of hyaluronan, which is a major component of the extracellular matrix of the tissues of vertebrates and of some bacteria. The enzyme degrades its substrate through a beta-elimination process called proton acceptance and donation. The inherent part of this degradation is a processive mode of action of the enzyme degrading hyaluronan into unsaturated disaccharide hyaluronic acid blocks from the reducing to the nonreducing end of the polymer following the initial random endolytic binding to the substrate. The final degradation product is the unsaturated disaccharide hyaluronic acid. The residues of the enzyme that are involved in various aspects of such degradation were identified based on the three-dimensional structures of the native enzyme and its complexes with hyaluronan substrates of various lengths. The catalytic residues were identified to be Asn(349), His(399), and Tyr(408). The residues responsible for the release of the product of the reaction were identified as Glu(388), Asp(398), and Thr(400), and they were termed negative patch. The hydrophobic residues Trp(291), Trp(292), and Phe(343) were found to be responsible for the precise positioning of the substrate for enzyme catalysis and named hydrophobic patch. The comparison of the specific activities and kinetic properties of the wild type and the mutant enzymes involving the hydrophobic patch residues W292A, F343V, W291A/W292A, W292A/F343V, and W291A/W292A/F343V allowed for the characterization of every mutant and for the correlation of the activity and kinetic properties of the enzyme with its structure as well as the mechanism of catalysis.  相似文献   

20.
Hyaluronan lyase (Hyal) is a surface enzyme occurring in many bacterial organisms including members of Streptococcus species. Streptococcal Hyal primarily degrades hyaluronan‐substrate (HA) of the extracellular matrix. This degradation appears to facilitate the spread of this bacterium throughout host tissues. Unlike purely endolytic degradation of its other substrates, unsulfated chondroitin or some chondroitin sulfates, the degradation of HA by Hyal proceeds by processive exolytic cleavage of one disaccharide at a time following an initial endolytic cut. Molecular dynamics (MD) studies of Hyal from Streptococcus pneumoniae are presented that address the enzyme's molecular mechanism of action and the role of domain motions for processive functionality. The analysis of extensive sub‐microsecond MD simulations of this enzyme action on HA‐substrates of different lengths and the connection between the domain dynamics of Hyal and the translocation of the HA‐substrate reveals that opening/closing and twisting domain motions of the Hyal are intimately linked to processive HA degradation. Enforced simulations confirmed this finding as the domain motions in SpnHyal were found to be induced by enforced substrate translocation. These results establish the dynamic interplay between Hyal flexibility and substrate translocation and provide insight into the processive mechanism of Hyal. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号