首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy, a eukaryotic cellular activity leading to the degradation of cellular components, serves as a defense mechanism against facultative intracellular bacteria as well as a growth niche for the obligate intracellular bacterium Coxiella burnetii . We here demonstrate that the obligate intracellular bacterial pathogen Chlamydia trachomatis lymphogranuloma venereum strongly induced autophagy in the middle of the chlamydial developmental cycle (24 h after infection), a time point with maximal level of chlamydial replication, but not during the early stages with low overall chlamydial metabolism (before 8 h). No autophagy induction was evident in cells exposed to heat- and UV-inactivated elementary bodies (EBs, the infectious form of Chlamydia ) or to inocula from which EBs had been removed before inoculation. Blocking chlamydial development with chloramphenicol also prevented autophagy induction in cells infected with infectious EBs. It appears that autophagy is activated primarily in response to the metabolic stress consequent to chlamydial replication. However, autophagy-defective ATG5−/− cells supported chlamydial development as efficiently as autophagy-proficient ATG5+/+ cells.  相似文献   

2.
Chlamydia psittaci is a zoonotic pathogen associated primarily with avian chlamydiosis. New chlamydial agents with suspected zoonotic potential were recently detected from domestic poultry in Germany and France indicating that the spectrum of Chlamydiaceae encountered in birds is not confined to a single chlamydial species. For further characterization, a specific real-time PCR targeting the conserved 16S rRNA gene was developed and validated for a specific detection of these atypical Chlamydiaceae. In order to address the epidemiological importance of the new chlamydial agents and their distribution, Chlamydiaceae-positive chicken samples collected from flocks from five different countries were examined. The results confirmed that C.psittaci is not the predominant chlamydial species among chickens examined and suggested that the new chlamydial agents could putatively be widespread in poultry flocks (France, Greece, Croatia, Slovenia and China at least) justifying their systematic investigation when poultry samples are submitted to laboratories for avian chlamydiosis diagnosis. Besides, 16S rRNA-based dendrogram, including sequences from both isolates of the new chlamydial agents or positive samples as well as representative sequences from species belonging to the order Chlamydiales, showed the new chlamydial agents to form a distinct line of descent separated from those of other chlamydial species, but clearly grouped within the family Chlamydiaceae. Finally, the phylogenetic tree inferred from the multi-locus sequence typing based on four housekeeping fragments (gatA, gidA, enoA and hflX) and the ompA-based dendrogram showed an almost identical topology of the new chlamydial agents with that recovered by 16S rRNA-based dendrogram. Interestingly, partial ompA gene sequences displayed considerable diversity among isolates.  相似文献   

3.
4.
Chlamydia are bacterial pathogens of humans and animals causing the important human diseases trachoma, sexually transmitted chlamydial disease and pneumonia. Of the human chlamydial diseases, sexually transmitted disease caused by Chlamydia trachomatis is a major public health concern. Chlamydia trachomatis replicates intracellularly and is characterised by a complex developmental cycle. Chlamydia is susceptible to humoral and cell-mediated immunity. Here we investigate the Th1 cell-mediated immune response against Chlamydia-infected cells as the response changes over the chlamydial developmental cycle. We suggest a form for the immune response over one developmental cycle by modelling the change in the number of intracellular chlamydial particles and assume peptides are presented in proportion to the number of replicating forms of chlamydial particles. We predict, perhaps non-intuitively, that persistent Chlamydia should be induced and forced not to return to the lytic cycle. We also suggest that extending the length of the time of the lytic cycle will effectively decrease the required efficacy of the Th1 response to eliminate the pathogen. We produce plots of active disease progression, control and clearance for varying levels of Th1 effectiveness.  相似文献   

5.
《Autophagy》2013,9(1):50-62
Interferon γ (IFNG) is a key host response regulator of intracellular pathogen replication, including that of Chlamydia spp The antichlamydial functions of IFNG manifest in a strictly host, cell-type and chlamydial strain dependent manner. It has been recently shown that the IFNG-inducible family of immunity-related GTPases (IRG) proteins plays a key role in the defense against nonhost adapted chlamydia strains in murine epithelial cells. In humans, IFN-inducible guanylate binding proteins (hGBPs) have been shown to potentiate the antichlamydial effect of IFNG; however, how hGBPs regulate this property of IFNG is unknown. In this study, we identified hGBP1/2 as important resistance factors against C. trachomatis infection in IFNG-stimulated human macrophages. Exogenous IFNG reduced chlamydial infectivity by 50 percent in wild-type cells, whereas shRNA hGBP1/2 knockdown macrophages fully supported chlamydial growth in the presence of exogenous IFNG. hGBP1/2 were recruited to bacterial inclusions in human macrophages upon stimulation with IFNG, which triggered rerouting of the typically nonfusogenic bacterial inclusions for lysosomal degradation. Inhibition of lysosomal activity and autophagy impaired the IFNG-mediated elimination of inclusions. Thus, hGBP1/2 are critical effectors of antichlamydial IFNG responses in human macrophages. Through their capacity to remodel classically nonfusogenic chlamydial inclusions and stimulate fusion with autophagosomes, hGBP1/2 disable a major chlamydial virulence mechanism and contribute to IFNG-mediated pathogen clearance.  相似文献   

6.
Chlamydia pneumoniae uses blood monocytes (PBMC) for systemic dissemination, persists in atherosclerotic lesions, and has been implicated in the pathogenesis of atherosclerosis. During transmigration in a newly developed transendothelial migration model (TEM) C. pneumoniae-infected PBMC spread their infection to endothelial cells. Transmigrated PBMC retained their infectivity and transmitted the pathogen to smooth muscle cells in the lower chamber of the TEM. Detection of chlamydial HSP60 mRNA proved pathogen viability and virulence. We conclude that PBMC can spread chlamydial infection to vascular wall cells and we suggest the TEM as a novel tool to analyze host-pathogen interactions in vascular chlamydial infections.  相似文献   

7.
Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane‐bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab‐controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re‐direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti‐chlamydial therapy.  相似文献   

8.
Pulmonary presence of Chlamydia pneumoniae is associated with acute and chronic infections. We show that unapparent chlamydial infection in four out of 31 chronic obstructive pulmonary disease (COPD) patients (12.9%) is characterized by a significant increase in infected alveolar epithelial cells type II (18.2 +/- 3.5% vs. 2.3 +/- 0.9; IHC/ISH) compared to a newly established model of acute chlamydial infection (ACIM) in vital lung specimens from pulmonary lobectomy. Expression of cHSP60 demonstrated pathogen viability and virulence in the ACIM. We conclude that target cells differ in acute and chronic chlamydial infection and suggest the ACIM as a novel tool to analyze the host-pathogen-interactions in acute respiratory infections.  相似文献   

9.
IFN-gamma-inducible protein 10 (IP-10) is a chemokine important in the attraction of T cells, which are essential for resolution of chlamydial genital tract infection. During infections with Gram-negative bacteria, the IP-10 response mediated through type I IFNs usually occurs as a result of TLR4 stimulation by bacterial LPS. However, we found that levels of IP-10 in genital tract secretions of Chlamydia trachomatis-infected female wild-type mice were similar to those of infected TLR2- and TLR4-deficient mice but significantly greater than those of infected MyD88-deficient mice. We investigated the mechanism of IP-10 and IFN-beta induction during chlamydial infection using mouse macrophages and fibroblasts infected ex vivo. The induction of IP-10 and IFN-beta was unchanged in Chlamydia-infected TLR2- and TLR4-deficient cells compared with wild-type cells. However, infection of MyD88-deficient cells resulted in significantly decreased responses. These results suggest a role for MyD88-dependent pathways in induction of IP-10 and IFN-beta during chlamydial infection. Furthermore, treatment of infected macrophages with an endosomal maturation inhibitor significantly reduced chlamydial-induced IFN-beta. Because endosomal maturation is required for MyD88-dependent intracellular pathogen recognition receptors to function, our data suggest a role for the intracellular pathogen recognition receptor(s) in induction of IFN-beta and IP-10 during chlamydial infection. Furthermore, the intracellular pathways that lead to chlamydial-induced IFN-beta function through TANK-binding kinase mediated phosphorylation and nuclear translocation of IFN regulatory factor-3.  相似文献   

10.
11.
12.
As an intracellular pathogen, the mechanism by which Chlamydia invade eukaryotic cells represents a cornerstone to understanding chlamydial biology. The ability of chlamydiae specifically to bind heparan sulphate or heparin and the association of this ability to bind and enter mammalian host cells was approached by searching experimentally for chlamydial outer membrane proteins that bind heparin. The 60 000 molecular weight cysteine-rich outer membrane complex protein, OmcB, bound heparin. The ability of OmcB to bind heparin was supported by mapping the region of the protein with heparin-binding capacity and demonstrating that an OmcB synthetic 20-mer peptide from this region specifically bound heparin. Surface localization of OmcB was shown using monospecific antisera specific to the 20-mer OmcB peptide that bound the surfaces of elementary bodies (EB) and by heparin-binding peptide cross-linking of EB surface proteins.  相似文献   

13.
Preliminary observations on the infectivity of trachoma-inclusion conjunctivitis organisms in primary (normal) human amniotic epithelial cells derived from 9 different amnions showed a considerable variation in the sensitivity of these cells toward the pathogens. There was also a remarkable diversity of inclusion-and chlamydial particle morphology in primary epithelial cells by light microscopy and immunofluorescence as compared to the inclusion morphology in L cells (continuous cell line of mouse fibroblasts). Present studies suggest that primary human amniotic epithelial cells could provide a convenient system to further explore the interaction of the strictly human chlamydial pathogen with normal human cells.  相似文献   

14.
Infection with Chlamydia pneumoniae, a human respiratory pathogen, has been associated with various chronic diseases such as asthma and atherosclerosis, possibly because the pathogen can exist in a persistent form. C. pneumoniae persistently infect DCs in a TNF-α dependent manner. The present study investigated whether C. pneumoniae infection can induce indoleamine 2,3-dioxygenase (IDO) activity in dendritic cells, and whether the restriction of chlamydial growth in the DCs by TNF-α is IDO dependent. Our data indicate that infection of DCs with C. pneumoniae resulted in the induction of IDO expression. Reporting on our use of anti-TNF-α antibody adalimumab and varying concentrations of TNF-α, we further demonstrate that IDO induction following infection of DCs with C. pneumoniae is TNF-α dependent. The anti-chlamydial activity induced by TNF-α and the expression of chlamydial 16S rRNA gene, euo, groEL1, ftsk and tal genes were correlated with induction of IDO. Addition of excess amounts of tryptophan to the DC cultures resulted in abrogation of the TNF-α-mediated chlamydial growth restriction. These findings suggest that infection of DCs by C. pneumoniae induces production of functional IDO, which subsequently causes depletion of tryptophan. This may represent a potential mechanism for DCs to restrict bacterial growth in chlamydial infections.  相似文献   

15.
Chlamydiae are Gram-negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co-immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi-1, but not with IRSp53. siRNA depletion of WAVE2 and Abi-1 abrogated chlamydia-induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott-Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi-1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.  相似文献   

16.
An infectious etiology has been suggested for Reiter's syndrome (RS) because the disease has often been observed to follow episodes of urethritis or dysentery. Despite demonstrations of bacterial antigens in the synovial tissues of RS patients, it is not clear whether viable organisms are present in the synovium in any particular stage of this disease. Furthermore, it is not clear how either viable organisms or their product(s) might reach the joints. Infection with the bacterium Chlamydia trachomatis is the most common sexually transmitted disease in the United States, and as such this organism has emerged as a primary pathogen associated with RS. Previous work from our group has shown that synovial biopsy tissues from a majority of RS patients studied show significant levels of apparently intact chlamydial RNA, even when synovial or urethral cultures from the same patients are unequivocally negative for the organism. We show here that inapparent urethral infection with chlamydia occurs with high prevalence in men, and that inapparent cervical infection with the organism occurs at high prevalence in women. These data provide an important link in the relationship between initial chlamydial infection and possible subsequent genesis of RS, and they may give useful insight into mechanisms by which chlamydial infection can lead to development of this disease. Our data argue further that inapparent infection may be a significant factor in pathogenesis for all chlamydia-related diseases, and they suggest that, contrary to current ideas, C. trachomatis can generate disseminated infection.  相似文献   

17.
The infectious cycle of phiCPG1, a bacteriophage that infects the obligate intracellular pathogen, Chlamydia psittaci strain Guinea Pig Inclusion Conjunctivitis, was observed using transmission electron microscopy of phage-hyperinfected, Chlamydia-infected HeLa cells. Phage attachment to extracellular, metabolically dormant, infectious elementary bodies and cointernalisation are demonstrated. Following entry, phage infection takes place as soon as elementary bodies differentiate into metabolically active reticulate bodies. Phage-infected bacteria follow an altered developmental path whereby cell division is inhibited, producing abnormally large reticulate bodies, termed maxi-reticulate bodies, which do not mature to elementary bodies. These forms eventually lyse late in the chlamydial developmental cycle, releasing abundant phage progeny in the inclusion and, upon lysis of the inclusion membrane, into the cytosol of the host cell. Structural integrity of the hyperinfected HeLa cell is markedly compromised at late stages. Released phage particles attach avidly to the outer leaflet of the outer membranes of lysed and unlysed Chlamydiae at different stages of development, suggesting the presence of specific phage receptors in the outer membrane uniformly during the chlamydial developmental cycle. A mechanism for phage infection is proposed, whereby phage gains access to replicating chlamydiae by attaching to the infectious elementary body, subsequently subverting the chlamydial developmental cycle to its own replicative needs. The implications of phage infection in the context of chlamydial infection and disease are discussed.  相似文献   

18.
Chlamydia trachomatis is an obligate intracellular bacterium that alternates between two metabolically different developmental forms. We performed fluorescence lifetime imaging (FLIM) of the metabolic coenzymes, reduced nicotinamide adenine dinucleotides [NAD(P)H], by two-photon microscopy for separate analysis of host and pathogen metabolism during intracellular chlamydial infections. NAD(P)H autofluorescence was detected inside the chlamydial inclusion and showed enhanced signal intensity on the inclusion membrane as demonstrated by the co-localization with the 14-3-3β host cell protein. An increase of the fluorescence lifetime of protein-bound NAD(P)H [τ2-NAD(P)H] inside the chlamydial inclusion strongly correlated with enhanced metabolic activity of chlamydial reticulate bodies during the mid-phase of infection. Inhibition of host cell metabolism that resulted in aberrant intracellular chlamydial inclusion morphology completely abrogated the τ2-NAD(P)H increase inside the chlamydial inclusion. τ2-NAD(P)H also decreased inside chlamydial inclusions when the cells were treated with IFNγ reflecting the reduced metabolism of persistent chlamydiae. Furthermore, a significant increase in τ2-NAD(P)H and a decrease in the relative amount of free NAD(P)H inside the host cell nucleus indicated cellular starvation during intracellular chlamydial infection. Using FLIM analysis by two-photon microscopy we could visualize for the first time metabolic pathogen-host interactions during intracellular Chlamydia trachomatis infections with high spatial and temporal resolution in living cells. Our findings suggest that intracellular chlamydial metabolism is directly linked to cellular NAD(P)H signaling pathways that are involved in host cell survival and longevity.  相似文献   

19.
Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence for the ability of C. pneumoniae to evade cellular defense and to persist in human macrophages.  相似文献   

20.
Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralizing of pathogens by means of antibodies attaching to the pathogen's binding sites. Antibodies bind to and block ligand sites on the pathogen which prevents these sites from attaching to target cell receptors and so cell entry is inhibited. Many studies investigate the role of humoral immunity for protection against chlamydial challenge and they have shown that neutralization of the chlamydial body requires a large number of attached antibodies. Steric hindrance greatly influences the number of available sites that may be bound, reducing relative occupancy well below 100%. We model steric effects of antibody Fab fragment attachment indicating that they must be taken into consideration to accurately model valency, the number of available binding sites. We derive a partial differential equation for the number of antibody Fabs and host cell receptors that are aggregated to extracellular chlamydial elementary bodies. We consider steric effects in describing the size distribution of aggregates. Our theory is in good agreement with Monte Carlo simulations of binding. We use our theoretical prediction for the valency in a model for the in-host population dynamics of a chlamydial infection and we fit our model to experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号