首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Formation of hemozoin in the malaria parasite, due to its unique nature, is an attractive molecular target. Several laboratories have been trying to unravel the molecular mechanism of hemozoin biosynthesis within the parasite digestive vacuoles. Use of different assay protocols for in vitro beta-hematin (synthetic identical to hemozoin) formation by these laboratories has led to inconsistent and often contradictory findings. Much of the difficulty may be attributed to oligomeric heme aggregates, which may be indistinguishable in some detection approaches if adequate separation of beta-hemtin is not achieved. Therefore, there is an urgent need for a widely accepted protocol for in vitro beta-hematin formation. We describe here a spectrophotometric assay for in vitro beta-hematin formation. The assay has been validated with the Plasmodium falciparum lysate, the parasite lipid extracts, and some commercially available fatty acids, which are known to initiate/catalyze beta-hematin formation in vitro. The necessity for multiple wash steps for accurate quantification of de novo hemozoin/beta-hematin formation was verified experimentally. It was necessary to wash the pellet, which contains beta-hematin and heme aggregates, sequentially with Tris/SDS buffer and alkaline bicarbonate solution for complete removal of monomeric heme and heme aggregates and accurate quantification of beta-hematin formed during the assay. The pellets and side products in the supernatant were characterized by infrared spectroscopy. No beta-hematin formation occurred in the absence of a catalytic/initiating factor. Based on these findings, a filtration-based assay that uses 96-well microplates, and which has important application in in vitro screening and identification of novel inhibitors of hemozoin formation as potential blood schizontocidal antimalarials, has been developed.  相似文献   

4.
Recent reports demonstrate that failure of artemisinin-based antimalarial therapies is associated with an altered response of early blood stage Plasmodium falciparum. This has led to increased interest in the use of pulse assays that mimic clinical drug exposure for analysing artemisinin sensitivity of highly synchronised ring stage parasites. We report a methodology for the reliable execution of drug pulse assays and detail a synchronisation strategy that produces well-defined tightly synchronised ring stage cultures in a convenient time-frame.  相似文献   

5.
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite.  相似文献   

6.
Plasmodium falciparum belongs to a group of eukaryotes expressing an ortholog of the prokaryotic T1-threonine peptidase, heat shock locus V (HslV). Bacterial HslV is a particularly well studied protease, due to its structural and biochemical similarity to the eukaryotic proteasome. Plasmodium falciparum HslV (PfHslV) is expressed in schizonts and merozoites of the asexual blood stage. Strong sequence conservation between plasmodial species, absence of HslV homologs in the human genome, and availability of specific inhibitors led us to explore its function and potential use as a drug target. In a first step, we investigated localization of PfHslV, using a bioinformatics approach and a transgenic P. falciparum line expressing a PfHslV-enhanced yellow fluorescent protein (EYFP) fusion protein from the endogenous pfhslV locus. PfHslV-EYFP was found in the mitochondrial matrix under fluorescence and immunoelectron microscopy. Endogenous, non-modified PfHslV was present in purified mitochondria and interference with mitochondrial membrane potential by drug treatment led to impairment of PfHslV processing. Import of heterologous EYFP into the plasmodial mitochondrion is mediated by the N-terminal 37 amino acids of PfHslV. PfHslV’s targeting sequence is also functional in human cells, demonstrating strong conservation of mitochondrial targeting in eukaryotes. In conclusion, our data shows that PfHslV is located to the plasmodial mitochondrion and presumably has vital function within this organelle which makes it an attractive target for interventions.  相似文献   

7.
High priority has been given to new assays that facilitate and accelerate the development of novel antimalarial compounds. Unlike evaluation of drugs in vitro, in which new approaches have been used to expedite identification of parasites, the conventional in vivo murine assay requires determination of parasitemia by light microscopy, an incompatible technique to test large numbers of drugs. We have investigated the possibility of using an autonomously fluorescent Plasmodium berghei strain, stably transformed with the green fluorescent protein, to rapidly quantify parasite growth by flow cytometry. The major improvement of this method is that P. berghei line transformed with green fluorescent protein parasites can be quickly and specifically detected in a drop of parasite-infected blood without any manipulation of the sample. Our results showed a clear correlation between the numbers of fluorescent cells detected by flow cytometry and conventional parasitemia, including a correspondence in the peaks of parasitemia. The validation of P. berghei line transformed with green fluorescent protein for chemotherapy studies was performed by evaluating its response to conventional antimalarial drugs such as chloroquine, quinine and sodium artesunate. The results of drug-susceptibility assays as determined by flow cytometry were comparable with those obtained by microscopic examination of Giemsa-stained slides. This PbGFP parasite should prove to be a rapid, simple and sensitive tool for the examination of the large number of compounds and conditions involved in the initial stages of drug development.  相似文献   

8.
9.
The development of new effective antimalarial agents is urgently needed due to the ineffectiveness of current drug regimes on the most virulent human malaria parasite Plasmodium falciparum. Antisense (AS) oligodeoxynucleotides (ODNs) have shown promise as chemotherapeutic agents. Phosphorothioate AS ODNs against different regions of P. falciparum topoisomerase II gene were investigated. Chloroquine- and pyrimethamine-resistant P. falciparum K1 strain was exposed to phosphorothioate AS ODNs for 48 h and growth was determined by flow cytometric assay or by microscopic assay. Exogenous delivery of phosphorothioate AS ODNs between 0.01 and 0.5 microM significantly inhibited parasite growth compared with sense sequence controls suggesting sequence specific inhibition. This inhibition was shown to occur during maturation stages, with optimal inhibition being detected after 36 h. These results should prove useful in future designs of novel antimalarial agents.  相似文献   

10.
Tryptophan-threonine-rich antigen (TryThrA) is a Plasmodium falciparum homologue of Plasmodium yoelii-infected erythrocyte membrane pypAg-1 antigen. pypAg-1 binds to the surface of uninfected mouse erythrocytes and has been used successfully in vaccine studies. The two antigens are characterized by an unusual tryptophan-rich domain, suggesting similar biological properties. Using synthetic peptides spanning the TryThrA sequence and human erythrocyte we have done binding assays to identify possible TryThrA functional regions. We describe four peptides outside the tryptophan-rich domain having high activity binding to normal human erythrocytes. The peptides termed HABPs (high activity binding peptides) are 30884 ((61)LKEKKKKVLEFFENLVLNKKY(80)) located at the N-terminal and 30901 ((401)RKSLEQQFGDNMDKMNKLKKY(420)), 30902 ((421)KKILKFFPLFNYKSDLESIM(440)) and 30913 ((641)DLESTAEQKAEKKGGKAKAKY(660)) located at the C-terminal. Studies with polyclonal goat antiserum against synthetic peptides chosen to represent the whole length of the protein showed that TryThrA has fluorescence pattern similar to PypAg-1 of P. yoelii. All HABPs inhibited merozoite in vitro invasion, suggesting that TryThrA protein may be participating in merozoite-erythrocyte interaction during invasion.  相似文献   

11.
The invasion of red blood cells (RBCs) is an essential event in the life cycle of all malaria-causing Plasmodium parasites; however, there are major gaps in our knowledge of this process. Here, we use video microscopy to address the kinetics of RBC invasion in the human malaria parasite Plasmodium falciparum. Under in vitro conditions merozoites generally recognise new target RBCs within 1 min of their release from their host RBC. Parasite entry ensues and is complete on average 27.6 s after primary contact. This period can be divided into two distinct phases. The first is an ∼11 s ‘pre-invasion’ phase that involves an often dramatic RBC deformation and recovery process. The second is the classical ‘invasion’ phase where the merozoite becomes internalised within the RBC in a ∼17 s period. After invasion, a third ‘echinocytosis’ phase commences when about 36 s after every successful invasion a dramatic dehydration-type morphology was adopted by the infected RBC. During this phase, the echinocytotic effect reached a peak over the next 23.4 s, after which the infected RBC recovered over a 5-11 min period. By then the merozoite had assumed an amoeboid-like state and was apparently free in the cytoplasm. A comparison of our data with that of an earlier study of the distantly related primate parasite Plasmodium knowlesi indicated remarkable similarities, suggesting that the kinetics of invasion are conserved across the Plasmodium genus. This study provides a morphological and kinetic framework onto which the invasion-associated physiological and molecular events can be overlaid.  相似文献   

12.
Clindamycin is safe and effective for the treatment of Plasmodium falciparum malaria, but its use as monotherapy is limited by unacceptably slow initial clinical response rates. To investigate whether the protracted action is due to an accumulative, time of exposure-dependent or a delayed effect on parasite growth, we studied the in vivo and in vitro pharmacodynamic profiles of clindamycin against P. falciparum. In vivo, elimination of young, circulating asexual parasite stages during treatment with clindamycin displayed an unusual biphasic kinetic: a plateau phase was followed by a precipitated decline of asexual parasite densities to nearly undetectable levels after 72 and 60 h in adult patients and asymptomatic children, respectively, suggesting an uninhibited capacity to establish a second, but not third, infectious cycle. In vitro, continuous exposure of a laboratory-adapted P. falciparum strain to clindamycin with concentrations of up to 100 microM for two replication cycles (96 h) did not produce inhibitory effects of >50% compared with drug-free controls as measured by the production of P. falciparum histidine-rich protein II (PfHRP2). PfHRP2 production was completely arrested after the second cycle (96-144h) (>10,000-fold decrease of mean half-inhibitory concentrations measured at 96-144h compared to 48-96h). Furthermore, incubation with clindamycin during only the first (0-48h) versus three (0-144h) parasite replication cycles led to comparable inhibition of PfHRP2 production in the third infectious cycle (96-144h) (mean IC(99) of 27 and 22nM, respectively; P=0.2). When parasite cultures were exposed to different concentrations of clindamycin ranging from 50 to 1,000nM for 72h and followed up in an experiment designed to simulate a typical 3-day treatment regimen, parasitaemia was initially suppressed below the microscopic detection threshold. Nonetheless, parasites reappeared in a dose-dependent manner after removal of drug at 72h but not in continuously drug-exposed controls. The delayed, but potent, antimalarial effect of clindamycin appears to be of greatest potential benefit in new combinations of clindamycin with rapidly acting antimalarial combination partners.  相似文献   

13.
Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host’s cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.  相似文献   

14.
A number of cyclosporins, including certain non-immunosuppressive ones, are potent inhibitors of the intraerythrocytic growth of the human malarial parasite Plasmodium falciparum. The major cyclosporin-binding proteins of P. falciparum were investigated by affinity chromatography on cyclosporin-Affigel followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Western blotting, and peptide mass fingerprinting. The two bands obtained on gels were shown to correspond to cyclophilins, PfCyP-19A (formerly PfCyP-19) and PfCyP-19B, whose genes had been characterised previously. PfCyP-19B was an abundant protein of intraerythrocytic P. falciparum (up to 0.5% of parasite protein) that was present in the highest amounts in schizont-stage parasites. Unexpectedly, given its apparent signal sequence, it was located primarily in the cytosol of the parasite. The peptidyl-prolyl cis-trans isomerase activity of recombinant PfCyP-19B had the same profile of susceptibility to cyclosporin derivatives as the bulk isomerase activity of crude P. falciparum extracts. The binding of cyclosporins to cyclophilins may be relevant to the mechanism of action of the drug in the parasite.  相似文献   

15.
Selected PvDBP-derived synthetic peptides were tested in competition assays with HLA molecules in order to identify and evaluate their binding to a wide range of MHC class II molecules. Binding was evaluated as the peptide’s ability to displace the biotinylated control peptide (HA306-318) and was detected by a conventional ELISA. Thus, one epitope for the HLA-DR1 molecule, two epitopes for the HLA-DR4 molecule, six epitopes for the HLA-DR7 molecule and three epitopes for the HLA-DR11 molecule displaying a high binding percentage (above 50%) were experimentally obtained. The in vitro results were compared with the epitope prediction results. Two peptides behaved as universal epitopes since they bound to a larger number of HLA-DR molecules. Given that these peptides are located in the conserved PvDBP region II, they could be considered good candidates to be included in the design of a synthetic vaccine against Plasmodium vivax malaria.  相似文献   

16.
Humans immunized by the bites of irradiated Plasmodium falciparum (Pf) sporozoite-infected mosquitoes are protected against malaria. Radiation attenuates the sporozoites preventing them from fully developing and replicating in hepatocytes, but the effects of radiation on gene expression in sporozoites are unknown. We used RT-PCR (35 cycles of PCR followed by densitometry) to assess the expression of ten genes in Pf sporozoites, and in sporozoites irradiated with 15,000cGy. Irradiation reduced expression substantially (>60%) of two DNA repair genes; moderately (30-60%) of PfUIS3, the Pf orthologue of PbUIS3, a gene up-regulated in Plasmodium berghei sporozoites and of a third DNA repair gene; and minimally (<30%) of the Pf18S ribosomal RNA, PfCSP, PfSSP2/TRAP, and PfCELTOS genes. Irradiation increased expression of PfSPATR minimally. PfLSA1 RNA was not detectable in sporozoites. These results establish that radiation of sporozoites affects gene expression levels and provide the foundation for studies to identify specific genes involved in attenuation and protective immunity.  相似文献   

17.
There is growing evidence that Plasmodium falciparum parasites in southeastern Asia have developed resistance to artemisinin combination therapy. The resistance phenotype has recently been shown to be associated with four single nucleotide polymorphisms in the parasite’s genome. We assessed the prevalence of two of these single nucleotide polymorphisms in P. falciparum parasites imported into Scotland between 2009 and 2012, and in additional field samples from six countries in southeastern Asia. We analysed 28 samples from 11 African countries, and 25 samples from nine countries in Asia/southeastern Asia/Oceania. Single nucleotide polymorphisms associated with artemisinin combination therapy resistance were not observed outside Thailand and Cambodia.  相似文献   

18.
The genotypes of merozoite surface protein-1, merozoite surface protein-2 and glutamine rich protein are frequently used to distinguish recrudescence from reinfection when parasitaemia reappears after antimalarial drug treatment. However, none of the previous reports has clearly assessed the change of genetic diversity following drug treatment. In the present study, we have assessed the impact of pyrimethamine/sulfadoxine and chlorproguanil/dapsone on the genetic diversity of isolates and the multiplicity of infection in patient isolates from Kilifi, Kenya. We have analysed the length polymorphism of merozoite surface protein-1, merozoite surface protein-2 and glutamine rich protein and the data clearly show that treatment with pyrimethamine/sulfadoxine and chlorproguanil/dapsone did not change the multiplicity of infection found in patients, in contrast to the selection that these drugs exert on the genes encoded by the target enzymes. In addition, we report that children of less than 2 years tend to have fewer numbers of clones per isolate when compared with older children. Overall, this study shows that the selection for genes that confer drug resistance is not a factor in reducing the genetic diversity of parasite clones in a patient.  相似文献   

19.
Dihydrofolate reductases (DHFRs) from Plasmodium falciparum (Pf) and various species of both prokaryotic and eukaryotic organisms have a conserved tryptophan (Trp) at position 48 in the active site. The role in catalysis and binding of inhibitors of the conserved Trp48 of PfDHFR has been analysed by site-specific mutagenesis, enzyme kinetics and use of a bacterial surrogate system. All 19 mutant enzymes showed undetectable or very low specific activities, with the highest value of k(cat)/K(m) from the Tyr48 (W48Y) mutant (0.12 versus 11.94M(-1)s(-1)), of about 1% of the wild-type enzyme. The inhibition constants for pyrimethamine, cycloguanil and WR99210 of the W48Y mutants are 2.5-5.3 times those of the wild-type enzyme. All mutants, except W48Y, failed to support the growth of Escherichia coli transformed with the parasite gene in the presence of trimethoprim, indicating the loss of functional activity of the parasite enzyme. Hence, Trp48 plays a crucial role in catalysis and inhibitor binding of PfDHFR. Interestingly, W48Y with an additional mutation at Asn188Tyr (N188Y) was found to promote bacterial growth and yielded a higher amount of purified enzyme. However, the kinetic parameters of the purified W48Y+N188Y enzyme were comparable with W48Y and the binding affinities for DHFR inhibitors were also similar to the wild-type enzyme. Due to its conserved nature, Trp48 of PfDHFR is a potential site for interaction with antimalarial inhibitors which would not be compromised by its mutations.  相似文献   

20.
Acyl carrier protein (ACP), an abundant protein in every cell, plays a central role in a number of metabolic processes requiring acyl group transfer. Conformational flexibility while crucial for its function remains substantially unaddressed. By dual polarization interferometry we establish correlation between the chain length of aliphatic groups covalently linked to Escherichia coli and Plasmodium falciparum ACP and their respective partial molar volumes in solution which helps to subserve the aforesaid goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号