首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (alphaMbeta2) but not lymphocyte function-associated antigen-1 (LFA-1; alphaLbeta2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 chemokine receptor transfectants or by stromal-derived factor-1alpha in Jurkat cells. Differential kinetics for activation of Mac-1 (sustained) and LFA-1 (transient) avidity in response to stromal-derived factor-1alpha were confirmed by expression of alphaM or alphaL in alphaL-deficient Jurkat cells. Moreover, expression of chimeras containing alphaL and alphaM cytoplasmic domain exchanges indicated that alpha cytoplasmic tails conferred the specific mode of regulation. Coexpressing alphaM or chimeras in mutant Jurkat cells with a "gain of function" phenotype that results in constitutively active LFA-1 demonstrated that Mac-1 was not constitutively active, whereas constitutive activity was mediated via the alphaL cytoplasmic tail, implying the presence of distinct signaling pathways for LFA-1 and Mac-1. Transendothelial chemotaxis of monocytes in response to MCP-1 was dependent on LFA-1; however, Mac-1 was involved at MCP-1 concentrations stimulating its avidity, showing differential contributions of beta2 integrins. Our data suggest that a specific regulation of beta2 integrin avidity by chemokines may be important in leukocyte extravasation and may be triggered by distinct activation pathways transduced via the alpha subunit cytoplasmic domains.  相似文献   

2.
The formation of a conjugate between a T cell and an APC requires the activation of integrins on the T cell surface and remodeling of cytoskeletal elements at the cell-cell contact site via inside-out signaling. The early events in this signaling pathway are not well understood, and may differ from the events involved in adhesion to immobilized ligands. We find that conjugate formation between Jurkat T cells and EBV-B cells presenting superantigen is mediated by LFA-1 and absolutely requires Lck. Mutations in the Lck kinase, Src homology 2 or 3 domains, or the myristoylation site all inhibit conjugation to background levels, and adhesion cannot be restored by the expression of Fyn. However, ZAP-70-deficient cells conjugate normally, indicating that Lck is required for LFA-1-dependent adhesion via other downstream pathways. Several drugs that inhibit T cell adhesion to ICAM-1 immobilized on plastic, including inhibitors of mitogen-activated protein/extracellular signal-related kinase kinase, phosphatidylinositol-3 kinase, and calpain, do not inhibit conjugation. Inhibitors of phospholipase C and protein kinase C block conjugation of both wild-type and ZAP-70-deficient cells, suggesting that a phospholipase C that does not depend on ZAP-70 for its activation is involved. These results are not restricted to Jurkat T cells; Ag-specific primary T cell blasts behave similarly. Although the way in which Lck signals to enhance LFA-1-dependent adhesion is not clear, we find that cells lacking functional Lck fail to recruit F-actin and LFA-1 to the T cell:APC contact site, whereas ZAP-70-deficient cells show a milder phenotype characterized by disorganized actin and LFA-1 at the contact site.  相似文献   

3.
The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A beta2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.  相似文献   

4.
Protein tyrosine phosphorylation is one of the earliest signaling events detected in response to lymphocyte function-associated antigen-1 (LFA-1) engagement during lymphocyte adhesion. In particular, the focal adhesion kinase p125FAK, involved in the modulation and rearrangement of the actin cytoskeleton, seems to be a crucial mediator of LFA-1 signaling. Herein, we investigate the role of a FAK tyrosine phosphatase, namely low molecular weight phosphotyrosine phosphatase (LMW-PTP), in the modulation of LFA-1-mediated T cell adhesion. Overexpression of LMW-PTP in Jurkat cells revealed an impairment of LFA-1-dependent cell-cell adhesion upon T cell receptor (TCR) stimulation. Moreover, in these conditions LMW-PTP causes FAK dephosphorylation, thus preventing the activation of FAK downstream pathways. Our results also demonstrated that, upon antigen stimulation, LMW-PTP-dependent FAK inhibition is associated to a strong reduction of LFA-1 and TCR co-clustering toward a single region of T cell surface, thus causing an impairment of receptor activity by preventing changes in their avidity state. Because co-localization of both LFA-1 and TCR is an essential event during encounters of T cells with antigen-presenting cells and immunological synapse (IS) formation, we suggest an intriguing role of LMW-PTP in IS establishment and stabilization through the negative control of FAK activity and, in turn, of cell surface receptor redistribution.  相似文献   

5.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH(2)-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1alpha-induced Akt phosphorylation. SDF-1alpha triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial chemotaxis but not VLA-4-dependent transmigration induced by SDF-1alpha. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1alpha, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1alpha in leukocytes, establishing a complex and bimodal involvement of H-Ras.  相似文献   

6.
The functional activity of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes can be regulated by T-cell receptor (TCR) stimulation and pharmacologic agents. It was of interest to determine if functionally active LFA-1 could be reconstituted on a nonhematopoietic, LFA-1-negative cell line. We report the expression of LFA-1 and diethylaminoethyl (DEAE) Mac-1 alpha beta heterodimers on the cell surface of a fibroblastoid cell line, COS, by DEAE dextran cotransfection of the alpha and beta subunit cDNAs. Immunoprecipitation studies demonstrated that the alpha and beta subunit was expressed in heterodimers. The alpha or beta subunit was expressed at lower levels after transfection with the alpha or beta subunit cDNA alone. Cotransfection of the alpha and beta subunit cDNAs, but not transfection of alpha or beta alone, was sufficient to reconstitute intercellular adhesion molecule-1 (ICAM-1) binding activity. Consistent with this observation, LFA-1 on the fibroblastoid cells possesses the activation epitope defined by the L16 monoclonal antibody (mAb). This epitope marks the conversion of LFA-1 from the low to high avidity state on peripheral blood T lymphocytes (PBLs) and is constitutively present on activated cell lines. In contrast to LFA-1 on leukocytes, the functional activity of LFA-1 on fibroblastoid cells was not influenced by phorbol ester treatment. Furthermore, the use of agents that interfere with intracellular signaling, a protein kinase C inhibitor, cAMP analogue, or the combination of a phosphodiesterase inhibitor and adenyl cyclase activator, did not affect the binding of COS cells expressing LFA-1 to purified ICAM-1.  相似文献   

7.
ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18)   总被引:13,自引:0,他引:13       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3129-3139
While the leukocyte integrin lymphocyte function-associated antigen (LFA)-1 has been demonstrated to bind intercellular adhesion molecule (ICAM)-1, results with the related Mac-1 molecule have been controversial. We have used multiple cell binding assays, purified Mac- 1 and ICAM-1, and cell lines transfected with Mac-1 and ICAM-1 cDNAs to examine the interaction of ICAM-1 with Mac-1. Stimulated human umbilical vein endothelial cells (HUVECs), which express a high surface density of ICAM-1, bind to immunoaffinity-purified Mac-1 adsorbed to artificial substrates in a manner that is inhibited by mAbs to Mac-1 and ICAM-1. Transfected murine L cells or monkey COS cells expressing human ICAM-1 bind to purified Mac-1 in a specific and dose-dependent manner; the attachment to Mac-1 is more temperature sensitive, lower in avidity, and blocked by a different series of ICAM-1 mAbs when compared to LFA-1. In a reciprocal assay, COS cells cotransfected with the alpha and beta chain cDNAs of Mac-1 or LFA-1 attach to immunoaffinity- purified ICAM-1 substrates; this adhesion is blocked by mAbs to ICAM-1 and Mac-1 or LFA-1. Two color fluorescence cell conjugate experiments show that neutrophils stimulated with fMLP bind to HUVEC stimulated with lipopolysaccharide for 24 h in an ICAM-1-, Mac-1-, and LFA-1- dependent fashion. Because cellular and purified Mac-1 interact with cellular and purified ICAM-1, we conclude that ICAM-1 is a counter receptor for Mac-1 and that this receptor pair is responsible, in part, for the adhesion between stimulated neutrophils and stimulated endothelial cells.  相似文献   

8.
9.
《Cellular signalling》2014,26(7):1489-1499
Syndecans are cell membrane proteoglycans that can modulate the activity and dynamics of some growth factor receptors and integrins. Here, we show the down-regulation of integrin lymphocyte function-associated antigen-1 (LFA-1) and inhibition of adhesion of Jurkat T cells transfected with syndecan-2. The PDZ-binding domain in the cytoplasmic region of syndecan-2 was necessary to block the LFA-1 high-affinity conformation, and to reduce cellular adhesion. A second cytoplasmic motif comprising tyrosines 179 and 191, and serines 187 and 188 contributed also to reduce LFA-1 function and cellular adhesion. Inhibition of the LFA-1 high-affinity conformation by syndecan-2 was independent of the expression of the talin head domain and RhoA, Rac1 and Cdc42 GTPases. These results demonstrate the importance of PDZ-binding domain of syndecan-2 for controlling LFA-1 affinity and cell adhesion.  相似文献   

10.
The small GTPase, Rap1, is a potent activator of leukocyte integrins and enhances the adhesive activity of lymphocyte function-associated antigen-1 (LFA-1) when stimulated by the T cell receptor (TCR) or chemokines. However, the mechanism by which Rap1 is activated remains unclear. Here, we demonstrate that phospholipase C (PLC)-gamma1 plays a critical role in the signaling pathway leading to Rap1 activation triggered by the TCR. In Jurkat T cells, TCR cross-linking triggered persistent Rap1 activation, and SDF-1 (CXCL12) activated Rap1 transiently. A phospholipase C inhibitor, U73122, abrogated Rap1 activation triggered by both the TCR and SDF-1 (CXCL12). PLC-gamma1-deficient Jurkat T cells showed a marked reduction of TCR-triggered Rap1 activation and adhesion to intercellular adhesion molecule-1 (ICAM-1) mediated by LFA-1. In contrast, SDF-1-triggered Rap1 activation and adhesion were not affected in these cells. Transfection of these cells with an expression plasmid encoding PLC-gamma1 restored Rap1 activation by the TCR and the ability to adhere to ICAM-1, accompanied by polarized LFA-1 surface clustering colocalized with regulator of adhesion and polarization enriched in lymphoid tissues (RAPL). Furthermore, when expressed in Jurkat cells, CalDAG-GEFI, a calcium and diacylglycerol-responsive Rap1 exchange factor, associated with Rap1, and resulted in enhanced Rap1 activation and adhesion triggered by the TCR. Our results demonstrate that TCR activation of Rap1 depends on PLC-gamma1. This activity is likely to be mediated by CalDAG-GEFI, which is required to activate LFA-1.  相似文献   

11.
《The Journal of cell biology》1994,124(6):1061-1070
Transition of leukocyte function-associated antigen-1 (LFA-1), from an inactive into an activate state depends on the presence of extracellular Mg2+ and/or Ca2+ ions. Although Mg2+ is directly involved in ligand binding, the role of Ca2+ in LFA-1 mediated adhesion remained obscure. We now demonstrate that binding of Ca2+, but not Mg2+, directly correlates with clustering of LFA-1 molecules at the cell surface of T cells, thereby facilitating LFA-1-ligand interaction. Using a reporter antibody (NKI-L16) that recognizes a Ca(2+)-dependent epitope on LFA-1, we found that Ca2+ can be bound by LFA-1 with different strength. We noticed that weak binding of Ca2+ is associated with a dispersed LFA-1 surface distribution on T cells and with non- responsiveness of these cells to stimuli known to activate LFA-1. In contrast, stable binding of Ca2+ by LFA-1 correlates with a patch-like surface distribution and vivid ligand binding after activation of LFA- 1. Mg(2+)-dependent ligand binding does not affect binding of Ca2+ by LFA-1 as measured by NKI-L16 expression, suggesting that Mg2+ binds to a distinct site, and that both cations are important to mediate adhesion. Only Sr2+ ions can replace Ca2+ to express the L16 epitope, and to induce clustering of LFA-1 at the cell surface. We conclude that Ca2+ is involved in avidity regulation of LFA-1 by clustering of LFA-1 molecules at the cell surface, whereas Mg2+ is important in regulation of the affinity of LFA-1 for its ligands.  相似文献   

12.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

13.
Incubation of peritoneal macrophages in vitro before fixation increased their ability to present exogenous peptides to 3A9 T hybridoma cells. The enhanced level of presentation correlated with a greatly increased, peptide-specific adhesion of 3A9 cells to the macrophages, whereas peptide-independent adhesion was minimal and essentially unaltered. 3A9 cells exhibited rapid peptide-specific adhesion (plateau by 5 to 10 min) and deadhesion (complete reversal by 5 min). Peptide-specific adhesion was blocked by anti-I-Ak and anti-LFA-1. Interaction of T cell receptors and CD-4 with peptide-I-Ak complexes appeared to provide little direct contribution to the avidity of T cell-macrophage adhesion, but activated a LFA-1-mediated adhesion mechanism. In addition, anti-T cell receptor, anti-CD3, and anti-CD4 antibodies themselves activated LFA-1-dependent adhesion in the absence of peptide. Unlike the peptide-induced adhesion, this adhesion was similar for macrophages whether or not they were incubated in vitro before fixation. We conclude that the different macrophage populations supported LFA-1-mediated adhesion equally. Therefore, the enhancement of T cell stimulation observed after in vitro incubation of macrophages was due to increased peptide presentation and consequently increased triggering of LFA-1-mediated adhesion. Mechanisms may exist to regulate the effectiveness with which peptide-class II MHC complexes are displayed for T cell recognition.  相似文献   

14.
Regulation of the avidity of LFA-1 (CD11a/CD18, alpha L beta 2) for its ligand ICAM-1 (CD54) was studied in human B cells by evaluating the effects of a phorbol ester, anti-IgM antibodies, staurosporine, and okadaic acid. We monitored changes in LFA-1 avidity by quantifying binding of cells to an immobilized rICAM-1 fusion protein. In this assay, the protein kinase C-activating phorbol ester PDB and anti-IgM antibodies, as well as the protein kinase inhibitor, staurosporine, were able to induce LFA-1-dependent binding to ICAM-1. This demonstrates that the high avidity state of LFA-1 can be induced by a protein kinase C-dependent and by a protein kinase C-independent pathway. Furthermore, treatment of the cells with the protein phosphatase inhibitor, okadaic acid, inhibited binding to ICAM-1. Treatment with staurosporine before addition of okadaic acid not only induced enhanced binding of cells to ICAM-1, but also dramatically reduced the ability of okadaic acid to inhibit binding. These results suggest a critical role for a protein phosphatase in inducing the high avidity state of LFA-1 as well as a role for a protein kinase in inducing the low avidity state of LFA-1.  相似文献   

15.
Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration.   总被引:29,自引:0,他引:29  
To differentiate the unique and overlapping functions of LFA-1 and Mac-1, LFA-1-deficient mice were developed by targeted homologous recombination in embryonic stem cells, and neutrophil function was compared in vitro and in vivo with Mac-1-deficient, CD18-deficient, and wild-type mice. LFA-1-deficient mice exhibit leukocytosis but do not develop spontaneous infections, in contrast to CD18-deficient mice. After zymosan-activated serum stimulation, LFA-1-deficient neutrophils demonstrated activation, evidenced by up-regulation of surface Mac-1, but did not show increased adhesion to purified ICAM-1 or endothelial cells, similar to CD18-deficient neutrophils. Adhesion of Mac-1-deficient neutrophils significantly increased with stimulation, although adhesion was lower than for wild-type neutrophils. Evaluation of the strength of adhesion through LFA-1, Mac-1, and CD18 indicated a marked reduction in firm attachment, with increasing shear stress in LFA-1-deficient neutrophils, similar to CD18-deficient neutrophils, and only a modest reduction in Mac-1-deficient neutrophils. Leukocyte influx in a subcutaneous air pouch in response to TNF-alpha was reduced by 67% and 59% in LFA-1- and CD18-deficient mice but increased by 198% in Mac-1-deficient mice. Genetic deficiencies demonstrate that both LFA-1 and Mac-1 contribute to adhesion of neutrophils to endothelial cells and ICAM-1, but adhesion through LFA-1 overshadows the contribution from Mac-1. Neutrophil extravasation in response to TNF-alpha in LFA-1-deficient mice dramatically decreased, whereas neutrophil extravasation in Mac-1-deficient mice markedly increased.  相似文献   

16.
To identify the intracellular signals which increase the adhesiveness of leukocyte function-associated antigen 1 (LFA-1), we established an assay system for activation-dependent adhesion through LFA-1/intercellular adhesion molecule 1 ICAM-1 using mouse lymphoid cells reconstituted with human LFA-1 and then introduced constitutively active forms of signaling molecules. We found that the phorbol myristate acetate (PMA)-responsive protein kinase C (PKC) isotypes (alpha, betaI, betaII, and delta) or phosphatidylinositol-3-OH kinase (PI 3-kinase) itself activated LFA-1 to bind ICAM-1. H-Ras and Rac activated LFA-1 in a PI 3-kinase-dependent manner, whereas Rho and R-Ras had little effect. Unexpectedly, Rap1 was demonstrated to function as the most potent activator of LFA-1. Distinct from H-Ras and Rac, Rap1 increased the adhesiveness independently of PI 3-kinase, indicating that Rap1 is a novel activation signal for the integrins. Rap1 induced changes in the conformation and affinity of LFA-1 and, interestingly, caused marked LFA-1/ICAM-1-mediated cell aggregation. Furthermore, a dominant negative form of Rap1 (Rap1N17) inhibited T-cell receptor-mediated LFA-1 activation in Jurkat T cells and LFA-1/ICAM-1-dependent cell aggregation upon differentiation of HL-60 cells into macrophages, suggesting that Rap1 is critically involved in physiological processes. These unique functions of Rap1 in controlling cellular adhesion through LFA-1 suggest a pivotal role as an immunological regulator.  相似文献   

17.
Cell adhesion plays a fundamental role in the organization of cells in differentiated organs, cell motility, and immune response. A novel micromanipulation method is employed to quantify the direct contribution of surface adhesion receptors to the physical strength of cell adhesion. In this technique, a cell is brought into contact with a glass-supported planar membrane reconstituted with a known concentration of a given type of adhesion molecules. After a period of incubation (5-10 min), the cell is detached from the planar bilayer by pulling away the pipette holding the cell in the direction perpendicular to the glass-supported planar bilayer. In particular, we investigated the adhesion between a Jurkat cell expressing CD2 and a glass-supported planar bilayer containing either the glycosyl-phosphatidylinositol (GPI) or the transmembrane (TM) isoform of the counter-receptor lymphocyte function-associated antigen 3 (LFA-3) at a concentration of 1,000 molecules/microns 2. In response to the pipette force the Jurkat cells that adhered to the planar bilayer containing the GPI isoform of LFA-3 underwent extensive elongation. When the contact radius was reduced by approximately 50%, the cell then detached quickly from its substrate. The aspiration pressure required to detach a Jurkat cell from its substrate was comparable to that required to detach a cytotoxic T cell from its target cell. Jurkat cells that had been separated from the substrate again adhered strongly to the planar bilayer when brought to proximity by micromanipulation. In experiments using the planar bilayer containing the TM isoform of LFA-3, Jurkat cells detached with little resistance to micromanipulation and without changing their round shape.  相似文献   

18.
The activation of leukocyte function-associated antigen-1 (LFA-1) plays a critical role in regulating immune responses. The metal ion-dependent adhesion site on the I-domain of LFA-1 αL subunit is the key recognition site for ligand binding. Upon activation, conformation changes in the I-domain can lead LFA-1 from the low affinity state to the high affinity (HA) state. Using the purified HA I-domain locked by disulfide bonds for immunization, we developed an mAb, 2E8, that specifically binds to cells expressing the HA LFA-1. The surface plasmon resonance analysis has shown that 2E8 only binds to the HA I-domain and that the dissociation constant (KD) for HA I-domain is 197 nm. The binding of 2E8 to the HA I-domain is metal ion-dependent, and the affinity decreased as Mn2+ was replaced sequentially by Mg2+ and Ca2+. Surface plasmon resonance analysis demonstrates that 2E8 inhibits the interaction of HA I-domain and ICAM-1. Furthermore, we found that 2E8 can detect activated LFA-1 on both JY and Jurkat cells using flow cytometry and parallel plate adhesion assay. In addition, 2E8 inhibits JY cell adhesion to human umbilical vein endothelial cells and homotypic aggregation. 2E8 treatment reduces the proliferation of both human CD4+ and CD8+ T cells upon OKT3 stimulation without the impairment of their cytolytic function. Taken together, these data demonstrate that 2E8 is specific for the high affinity form of LFA-1 and that 2E8 inhibits LFA-1/ICAM-1 interactions. As a novel activation-specific monoclonal antibody, 2E8 is a potentially useful reagent for blocking high affinity LFA-1 and modulating T cell activation in research and therapeutics.  相似文献   

19.
CD8(+) tumor-infiltrating lymphocytes (TIL) are defective in cytolysis due to tumor-induced inhibition of proximal TCR-mediated signaling, a defect that is relieved upon purification and brief culture. We show in this study that frequency of conjugation in vitro of nonlytic TIL with tumor cells is low in comparison with their lytic counterparts, and the strength of interaction and duration of conjugation are also reduced. Previous reports show that p56(lck) activation is required for TCR-initiated LFA-1 avidity up-regulation, raising the question: is low LFA-1 avidity the basis of reduced TIL conjugation frequency? When stimulated with phorbol ester, nonlytic TIL bind purified ICAM-1 equivalently as lytic TIL, suggesting that LFA-1 can be activated if proximal TCR signaling is bypassed. However, when treated with phorbol ester, the conjugation frequency of nonlytic TIL does not increase. CD2 and CD8 also mediate T cell adhesion to cognate target cells and are both expressed at lower levels in nonlytic TIL in addition to being excluded from the immune synapse formed upon conjugation. Collectively, these results imply that adhesion defects in nonlytic TIL result from a combination of decreased cell surface levels of adhesion molecules, deficient LFA-1 activation, and the failure to recruit essential adhesion receptors to the membrane contact site formed with cognate target cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号