首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The C3-like ADP-ribosyltransferases exhibit a very confined substrate specificity compared with other Rho-modifying bacterial toxins; they selectively modify the RhoA, -B, and -C isoforms but not other members of the Rho or Ras subfamilies. In this study, the amino acid residues involved in the RhoA substrate recognition by C3 from Clostridium botulinum are identified by applying mutational analyses of the nonsubstrate Rac. First, the minimum domain responsible for the recognition by C3 was identified as the N-terminal 90 residues. Second, the combination of the N-terminal basic amino acids ((Rho)Arg(5)-Lys(6)), the acid residues (Rho)Glu(47) and (Rho)Glu(54) only slightly increases ADP-ribosylation but fully restores the binding of the respective mutant Rac to C3. Third, the residues (Rho)Glu(40) and (Rho)Val(43) also participate in binding to C3 but they are mainly involved in the correct formation of the ternary complex between Rho, C3, and NAD(+). Thus, these six residues (Arg(5), Lys(6), Glu(40), Val(43), Glu(47), and Glu(54)) distributed over the N-terminal part of Rho are involved in the correct binding of Rho to C3. Mutant Rac harboring these residues shows a kinetic property with regard to ADP-ribosylation, which is identical with that of RhoA. Differences in the conformation of Rho given by the nucleotide occupancy have only minor effects on ADP-ribosylation.  相似文献   

2.
Pretreatment of rho protein purified from pig brain cytosol with EDTA (3 mM) for 10 min at 30 degrees C inhibited its ADP-ribosylation by Clostridium botulinum C3 ADP-ribosyltransferase by more than 90%. The EDTA effect was not caused by alteration of C3. GDP or GDP beta S present during the pretreatment period completely prevented the decrease in ADP-ribosylation with half-maximal and maximal effects at 3 and 300 microM, respectively. GTP or GTP gamma S were less efficacious in preventing the decrease in ADP-ribosylation, but were more potent (half-maximal and maximal effects at 0.1 and 3 microM, respectively). [32P]ADP-ribose incorporated in pig brain rho by C3 was de-ADP-ribosylated by the enzyme in the presence of nicotinamide and at low pH. Concomitantly, [32P]NAD was formed. The pH optima for ADP-ribosylation and de-ADP-ribosylation were pH 7.5 and 5.5, respectively. De-ADP-ribosylation was most efficient with nicotinamide, less effective with 3-acetylpyridine and not observed with 3-aminopyridine, 4-aminopyridine, 4-acetylpyridine and isonicotinic acid. As observed for the ADP-ribosylation, the de-ADP-ribosylation by C3 was maximal with the GDP-bound form of rho and blocked after EDTA treatment.  相似文献   

3.
Two C3 ADP-ribosyltransferase substrates with different characteristics were isolated from bovine brain cytosol. Amino acid sequences of tryptic peptides from the two substrates were identical to rhoA and rhoB; hence, the purified proteins are referred to as rhoA* and rhoB*, respectively. Soluble rhoA* exhibits properties different from those previously reported for rho proteins. In contrast to other C3 substrates, rhoA* behaved as a 77-80-kDa protein on gel filtration, although on sodium dodecyl sulfate-polyacrylamide gel electrophoresis the ADP-ribosylated moiety had a mobility consistent with a 21.5-kDa protein. Furthermore, C3-catalyzed ADP-ribosylation of rhoA* was dependent on guanine nucleotides in the presence of 1 mM Mg2+ or 1 mM EDTA (0.19 microM free Mg2+). Half-maximal stimulation by GTP, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), guanylyl-imidodiphosphate (Gpp(NH)p), and GDP was observed at 16, 20, 220, and 380 nM, respectively; guanosine 5'-O-(2-thiodiphosphate), GMP, and adenine nucleotides were ineffective. In the presence of GTP gamma S, the rate and extent of ADP-ribosylation was enhanced by dimyristoylphosphatidylcholine and/or cholate. This increase in ADP-ribosylation was specific for rhoA*; it was not observed with rhoB* and has not been reported for other C3 substrates. These distinct properties suggest that rhoA* is a newly recognized type of C3 substrate, differing from the rhoA-like proteins previously reported. rhoB*, on the other hand, has properties similar to those reported for membrane-associated rhoB and its ADP-ribosylation was independent of guanine nucleotides in the presence of 1 mM Mg2+ and not affected by dimyristoylphosphatidylcholine and/or cholate.  相似文献   

4.
5.
6.
A 24-kDa G protein, ADP-ribosylable by exoenzyme C3 from Clostridium botulinum and therefore related to the rho family, was found to be abundantly present in human and bovine neutrophils, and preferentially located in cytosol. In human myeloid HL60 cells, the amount of C3 substrate increased during differentiation of the HL60 cells into granulocytes. The effect of exoenzyme C3 on different functions of bovine neutrophils, namely generation of O-2, degranulation and chemotaxis, has been tested, using electropermeabilized cells. Exoenzyme C3 hardly affected the respiratory burst and the degranulation. In contrast, it efficiently inhibited the spontaneous and chemoattractant-induced motility of the cells and disorganized the actin microfilament assembly.  相似文献   

7.
Exoenzyme C3 from Clostridium botulinum types C and D specifically ADP-ribosylated a 21-kilodalton cellular protein, p21.bot. Guanyl nucleotides protected the substrate against denaturation, which implies that p21.bot is a G protein. When introduced into the interior of cells, purified exoenzyme C3 ADP-ribosylated intracellular p21.bot and changed its function. NIH 3T3, PC12, and other cells rapidly underwent temporary morphological alterations that were in certain respects similar to those seen after microinjection of cloned ras proteins. When injected into Xenopus oocytes, C3 induced migration of germinal vesicles and potentiated the cholera toxin-sensitive augmentation of germinal vesicle breakdown by progesterone, also as caused by ras proteins. Nevertheless, p21.bot was immunologically distinct from p21ras.  相似文献   

8.
The substrate of the C3 exoenzyme from botulinum toxin is a protein which is particularly abundant in the cytosol of neutrophils [Stasia, M. J., Jouan, A., Bourmeyster, N., Boquet, P., & Vignais, P. V. (1991) Biochem. Biophys. Res. Commun. 180, 615-622]. Optimal conditions for the ADP-ribosylation of the C3 substrate have been established in order to follow the course of its purification from bovine neutrophil cytosol. In particular, phosphoinositides at micromolar concentrations were found to enhance the ADP-ribosylation capacity of the C3 substrate in crude neutrophil cytosol and partially purified fractions. A [32P]ADP-ribosylatable protein, migrating on SDS-PAGE with a mass of 24 kDa, was copurified with a 29-kDa protein by a series of chromatographic steps on DEAE-Sephacel, Biogel P60, and Mono Q. In the case of the C3 substrate, isoelectric focusing revealed two major labeled bands with pI values of 6.2 and 5.6; the pI of the 29-kDa protein was 4.8-5.0. On the basis of the amino acid sequence of peptides resolved after proteolytic digestion, the 24-kDa protein and the 29-kDa protein were identified respectively as rho and the GDP dissociation inhibitor (GDI), suggesting that rho and GDI copurify from bovine neutrophil cytosol in the form of a complex. The presence of a number of amino acid residues specific of rho A in the enzymatic digest originating from rho indicates that, among the rho proteins, at least rho A belongs to the GDI-rho complex.  相似文献   

9.
The substrate specificities of the actin-ADP-ribosylating toxins, Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin were studied by using five different preparations of actin isoforms: alpha-skeletal muscle actin, alpha-cardiac muscle actin, gizzard gamma-smooth muscle actin, spleen beta- and gamma-cytoplasmic actin, and aortic smooth muscle actin containing alpha- and gamma-smooth muscle actin isoforms. C. perfringens iota toxin ADP-ribosylated all actin isoforms tested, whereas C. botulinum C2 toxin did not modify alpha-skeletal muscle actin or alpha-cardiac muscle actin. Spleen beta/gamma-cytoplasmic actin and gizzard gamma-smooth muscle actin were substrates of C. botulinum C2 toxin. In the aortic smooth muscle actin preparation, gamma-smooth muscle actin but not alpha-smooth muscle actin was ADP-ribosylated by C. botulinum C2 toxin. The data indicate that, in contrast to C. perfringens iota toxin, C. botulinum C2 toxin ADP-ribosylates only beta/gamma-cytoplasmic and gamma-smooth muscle actin and suggest that the N-terminal region of actin isoforms define the substrate specificity for ADP-ribosylation by C. botulinum C2 toxin.  相似文献   

10.
By cation-exchange column chromatography followed by gel filtration or hydroxylapatite column chromatography, ADP-ribosyltransferases (exoenzyme C3) were isolated from culture supernatants of Clostridium botulinum type C strains Stockholm (CST) and 6813 (C6813) and from type D strains South African (DSA) and 1873 (D1873), and their molecular properties were compared. The purified C3 enzymes were homogeneous in polyacrylamide gel electrophoresis. The C3 enzymes existed as single-chain polypeptides with molecular masses of 25.0 to 25.5 kDa and transferred ADP-riboses to the same substrates in rat brain membrane extract. The C3 enzymes could be roughly classified into two groups with respect to amino acid composition, amino-terminal sequence, and antigenicity. One group contains the C3 enzymes of strains C6813 and DSA, and the other contains those of strains CST and D1873. The specific activity of the C3 enzyme of strain C6813 was about 15 times higher than that of the C3 enzyme of strain CST. These results indicate that the classification of the C3 molecules differs from that of the neurotoxin molecules.  相似文献   

11.
Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin belong to a novel family of actin ADP-ribosylating toxins. ADP-ribosylation of actin inhibits actin polymerization and G-actin-associated ATPase activity. The ADP-form of actin is ADP-ribosylated at a higher rate than actin with bound ATP. ADP-ribosylation of actin is reversible, a reaction, which is accompanied by reconstitution of actin ATPase activity.  相似文献   

12.
RhoA, -B, and -C are ADP-ribosylated by Clostridium botulinum exoenzyme C3 to induce redistribution of the actin filaments in intact cells, a finding that has led to the notion that the ADP-ribosylation blocks coupling of Rho to the downstream effectors. ADP-ribosylation, however, does not alter nucleotide binding, intrinsic, and GTPase-activating protein-stimulated GTPase activity. ADP-ribosylated Rho is even capable of activating the effector protein ROK in a recombinant system. Treatment of cells with a cell-permeable chimeric C3 toxin led to complete localization of modified Rho to the cytosolic fraction based on the complexation of ADP-ribosylated Rho with the guanine-nucleotide dissociation inhibitor-1 (GDI-1). The modified complex turned out to be resistant to phosphatidylinositol 4,5-bisphosphate- and GTPgammaS-induced release of Rho from GDI-1. Thus, ADP-ribosylation leads to entrapment of Rho in the GDI-1 complex. The increased stability of the GDI complex prevented binding of Rho to membrane-associated players of the GTPase cycle such as the activating guanine nucleotide exchange factors and effector proteins.  相似文献   

13.
Clostridium botulinum C3 is a recently discovered exoenzyme that ADP-ribosylates a eukaryotic GTP-binding protein of the ras superfamily. We show now that the bacterially-expressed product of the human rhoC gene is ADP-ribosylated by C3 and corresponds in size, charge and behavior to the dominant C3 substrate of eukaryotic cells. C3 treatment of Vero cells results in the disappearance of microfilaments and in actinomorphic shape changes without any apparent direct effect upon actin. Thus the ADP-ribosylation of a rho protein seems to be responsible for microfilament disassembly and we infer that the unmodified form of a rho protein may be involved in cytoskeletal control.  相似文献   

14.
The exoenzyme C3 produced byClostridium botulinum catalyzes ADP-ribosylation ofrho gene products which belong to a family of small molecular-weight GTP-binding proteins. The C3 enzyme-catalyzed ADP-ribosylation ofrho proteins partially purified from bovine brain was markedly activated by certain types of detergents or phospholipids and by endogenous factors present in the brain cytosol.Rho A protein that had been expressed inE. coli and subsequential purified was readily ADP-ribosylated by the C3 enzyme even in the absence of the activating factors. These results suggest that partially purifiedrho proteins contain an inhibitor, probablyrho GDI (GDP-dissociation inhibitor forrho p21), of C3-catalyzed ADP-ribosylation. The activity of an endogenous enzyme, having the same substrate as botulinum C3 enzyme, was also found in brain cytosol. The enzyme activity was partially purified and characterized. The enzyme appeared to have a molecular mass of appreximately 20,000 on a gel filtration and displayed unique properties similar to those observed with the botulinum C3 enzyme. The -subunits of -trimeric G proteins which served as the substrates of cholera or pertussis toxin were not ADP-ribosylated by the brain enzyme.  相似文献   

15.
C3-like toxins ADP-ribosylate and inactivate Rho GTPases. Seven C3-like ADP-ribosyltransferases produced by Clostridium botulinum, Clostridium limosum, Bacillus cereus and Staphylococcus aureus were identified and two representatives - C3bot from C. botulinum and C3stau2 from S. aureus - were crystallized. Here we present the 1.8 Å structure of C. limosum C3 transferase C3lim and compare it to the structures of other family members. In contrast to the structure of apo-C3bot, the canonical ADP-ribosylating turn turn motif is observed in a primed conformation, ready for NAD binding. This suggests an impact on the binding mode of NAD and on the transferase reaction. The crystal structure explains why auto-ADP-ribosylation of C3lim at Arg41 interferes with the ADP-ribosyltransferase activity of the toxin.  相似文献   

16.
In the pig heart sarcolemma, a 65 kDa protein is found to be ADP-ribosylated by Clostridium botulinum ADP-ribosyltransferase (exoenzyme C3). ADP-ribosylation of this protein is regulated by guanyl nucleotides and cytosol factor in a fashion similar to that for other C3 substrates. The new exoenzyme C3 substrate was partially purified. This protein is supposed to be a GTP-binding one.  相似文献   

17.
The exoenzyme S (ExoS)-producing Pseudomonas aeruginosa strain, 388, and corresponding ExoS knock-out strain, 388Δ exoS , were used in a bacterial and mammalian co-culture system as a model for the contact-dependent delivery of ExoS into host cells. Examination of DNA synthesis and Ras ADP-ribosylation in tumour cell lines expressing normal and mutant Ras revealed a decrease in DNA synthesis concomitant with ADP-ribosylation of Ras proteins after exposure to ExoS-producing bacteria, but not after exposure to non-ExoS-producing bacteria. Examination of normal H-Ras, K-Ras and N-Ras by two-dimensional electrophoresis after exposure to bacteria revealed differences in the degree of ADP-ribosylation by ExoS, with H-Ras being modified most extensively. ADP-ribosylation of oncogenic forms of Ras was examined in vivo using cancer lines expressing mutant forms of H-, N- or K-Ras. The mutant Ras proteins were modified in a manner qualitatively similar to their normal counterparts. Using Ras/Raf-1 co-immunoprecipitation after co-culture, it was found that exposure to ExoS-producing bacteria caused a decrease in the amount of Raf-1 associated with EGF-activated Ras and oncogenic Ras. The results from this study indicate that ExoS ADP-ribosylates both normal and mutant Ras proteins in vivo and inhibits signalling through Ras.  相似文献   

18.
Botulinum neurotoxin type D and exoenzyme C3 have been separately purified from Clostridium botulinum strain D-1873 to apparent homogeneity. Both ADP-ribosylated a rat liver cytosolic protein of 24 kDa. The N-terminal amino acid sequence of C3 was determined and showed a low degree of homology with those of the light and heavy chains of neurotoxins of various types which have been reported previously. However, a polyclonal antibody raised against C3 cross-reacted with the light chains, but not with the heavy chains, of type C1 and D neurotoxins. Furthermore, a monoclonal antibody recognizing the light chains of type C1 and D neurotoxins interacted with C3. These results suggest that the light chain of type C1 or D neurotoxin and exoenzyme C3 share at least one epitope in common with each other.  相似文献   

19.
A novel enzyme activity was found in bovine brain cytosol that transfers the ADP-ribosyl moiety of NAD to proteins with Mr values of 22,000 and 25,000. The substrates were the same GTP-binding proteins serving as the substrate of an ADP-ribosyltransferase C3 which was produced by a type C strain of Clostridium botulinum. The brain enzyme was partially purified from the cytosol and had a molecular mass of approximately 20,000 on a gel filtration column. The brain endogenous enzyme displayed unique properties similar to those observed with botulinum C3 enzyme. The enzyme activity was markedly stimulated by a protein factor that had been initially found in the cytosol as an activator for botulinum C3-catalyzed ADP-ribosylation (Ohtsuka, T., Nagata, K., Iiri, T., Nozawa, Y., Ueno, K., Ui, M., and Katada, T. (1989) J. Biol. Chem. 264, 15000-15005). The activity of the brain enzyme was also affected by certain types of detergents or phospholipids. The substrate of the brain enzyme was specific for GTP-binding proteins serving as the substrate of botulinum C3 enzyme; the alpha-subunits of trimeric GTP-binding proteins which served as the substrate of cholera or pertussis toxin were not ADP-ribosylated by the endogenous enzyme. Thus, this is the first report showing an endogenous enzyme in mammalian cells that catalyzes ADP-ribosylation of small molecular weight GTP-binding proteins.  相似文献   

20.
ADP-ribosylation of platelet actin by botulinum C2 toxin   总被引:10,自引:0,他引:10  
Botulinum C2 toxin is a microbial toxin which possesses ADP-ribosyltransferase activity. In human platelet cytosol a 43-kDa protein was ADP-ribosylated by botulinum C2 toxin. Labelling of the 43-kDa protein using [32P]NAD as substrate was reduced by unlabelled NAD and nicotinamide. The label was removed by treatment with snake venom phosphodiesterase. Half-maximal and maximal ADP-ribosylation occurred at 0.1 microgram/ml and 3 micrograms/ml botulinum C2 toxin, respectively. The Km value of the ADP-ribosylation reaction for NAD was about 1 microM. The peptide map of the ADP-ribosylated 43-kDa protein was almost identical with platelet actin. The ADP-ribosylated 43-kDa substrate protein bound to and was eluted from immobilized DNase I in a manner similar to G-actin. Trypsin treatment of platelet cytosol decreased subsequent ADP-ribosylation of the 43-kDa protein without occurrence of smaller labelled polypeptides. Purified platelet actin was also ADP-ribosylated by botulinum C2 toxin with similar characteristics found with actin in platelet cytosol. Phalloidin decreased the ADP-ribosylation of actin in platelet cytosol and of isolated platelet actin. Half-maximal and maximal, about 90%, reduction of actin ADP-ribosylation was observed at 0.4 microM and 10 microM phalloidin, respectively. ADP-ribosylation of purified actin, induced by botulinum C2I toxin, abolished the formation of the typical microfilament network. The data indicate that platelet G-actin but not F-actin is a substrate of botulinum C2 toxin and that this covalent modification largely affects the functional properties of actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号