首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The roe deer, Capreolus sp., is one of the most widespread meso-mammals of Palearctic distribution, and includes two species, the European roe deer, C. capreolus inhabiting mainly Europe, and the Siberian roe deer, C. pygargus, distributed throughout continental Asia. Although there are a number of genetic studies concerning European roe deer, the Siberian roe deer has been studied less, and none of these studies use microsatellite markers. Natural processes have led to genetic structuring in wild populations. To understand how these factors have affected genetic structure and connectivity of Siberian roe deer, we investigated variability at 12 microsatellite loci for Siberian roe deer from ten localities in Asia.

Results

Moderate levels of genetic diversity (H E = 0.522 to 0.628) were found in all populations except in Jeju Island, South Korea, where the diversity was lowest?(H E?= 0.386). Western populations showed relatively low genetic diversity and higher degrees of genetic differentiation compared with eastern populations (mean Ar = 3.54 (east), 2.81 (west), mean F ST = 0.122). Bayesian-based clustering analysis revealed the existence of three genetically distinct groups (clusters) for Siberian roe deer, which comprise of the Southeastern group (Mainland Korea, Russian Far East, Trans-Baikal region and Northern part of Mongolia), Northwestern group (Western Siberia and Ural in Russia) and Jeju Island population. Genetic analyses including AMOVA (F RT = 0.200), Barrier and PCA also supported genetic differentiation among regions separated primarily by major mountain ridges, suggesting that mountains played a role in the genetic differentiation of Siberian roe deer. On the other hand, genetic evidence also suggests an ongoing migration that may facilitate genetic admixture at the border areas between two groups.

Conclusions

Our results reveal an apparent pattern of genetic differentiation among populations inhabiting Asia, showing moderate levels of genetic diversity with an east-west gradient. The results suggest at least three distinct management units of roe deer in continental Asia, although genetic admixture is evident in some border areas. The insights obtained from this study shed light on management of Siberian roe deer in Asia and may be applied in conservation of local populations of Siberian roe deer.
  相似文献   

2.
The nocturnal activities of predators and prey are influenced by several factors, including physiological adaptations, habitat quality and, we suspect, corresponds to changes in brightness of moonlight according to moon phase. In this study, we used a dataset from 102 camera traps to explore which factors are related to the activity pattern of North China leopards (Panthera pardus japonensis) in Shanxi Tieqiaoshan Provincial Nature Reserve (TPNR), China. We found that nocturnal activities of leopards were irregular during four different lunar phases, and while not strictly lunar philic or lunar phobic, their temporal activity was highest during the brighter moon phases (especially the last quarter) and lower during the new moon phase. On the contrary, roe deer (Capreolus pygargus) exhibited lunar philic activity, while wild boar (Sus scrofa) and tolai hare (Lepus tolai) were evidently lunar phobic, with high and low temporal activity during the full moon, respectively. In terms of temporal overlap, there was positive overlap between leopards and their prey species, including roe deer and tolai hare, while leopard activity did not dip to the same low level of wild boar during the full moon phase. Human activities also more influenced the temporal activity of leopards and wild boar than other species investigated. Generally, our results suggested that besides moonlight risk index (MRI), cloud cover and season have diverse effects on leopard and prey nocturnal activity. Finally, distinct daytime and nighttime habitats were identified, with leopards, wild boar, and tolai hare all using lower elevations at night and higher elevations during the day, while leopards and roe deer were closer to secondary roads during the day than at night.  相似文献   

3.
A molecular-genetic analysis of the nucleotide sequences of the cytochrome b gene (1140 base pairs) of the mitochondrial DNA and 17 microsatellite loci of eight samples of roe deer from the Samara forest of Dnipropetrovsk oblast (Ukraine) was carried out. For comparison, 212 corresponding mtDNA sequences of the Siberian and European roe deer and data on the variability of microsatellite markers in 49 representatives of these species were included in the study. It was noted that all the analyzed mitochondrial sequences of individuals from the Samara forest are characteristic of the Siberian roe Capreolus pygargus Pallas, 1771. Four haplotypes were described, all of which belonged to the haplogroup typical for the western part of the range of C. pygargus. A fragment analysis of the microsatellite loci of nuclear DNA confirmed the identification of the investigated group with the Siberian species.  相似文献   

4.
Rarely found infected, roe deer (Capreolus capreolus) are not considered a bovine tuberculosis (bTB) reservoir. However, serial cases discovered between 2010 and 2014 in one of the bTB endemic regions in France threw doubt on the epidemiological role played by this small wild cervid in ecosystems where cattle and other wild animals are both infected. Our objective was to analyse the bTB host status of roe deer as regards infection prevalence within the population and Mycobacterium bovis-induced pathology in this species. From November 2001 to March 2016, 668 roe deer were analysed (culture and/or PCR) through active surveillance implemented in three bTB endemic areas in France (Brotonne forest, Dordogne and Côte d’Or) and 132 through passive surveillance (presence of macroscopic lesions) in the whole country. Only seven roe deer were found infected by M. bovis, exclusively in bTB endemic areas, one through active surveillance (Brotonne forest; n = 203, apparent prevalence 0.49%). On the basis of these results, observed pathological patterns (mainly pulmonary lesions), species social behaviour (less gregarious than other ungulates) and food behaviour (mainly a selective browser), roe deer does not appear to be a true reservoir of bTB. However, once infected, it develops lesions reflecting a clear ability for bacterial excretion and therefore transmission to other species, most likely by indirect contact. It could thus be a spillover host included in a multi-host component reservoir in endemic areas. Consequently, passive surveillance is essential to detect infection and to implement specific management to limit interactions with cattle, where infected roe deer are found.  相似文献   

5.
Sequence analysis of the mtDNA cytochrome b gene (974 bp) was performed using 139 roe deer specimens from different regions of the European part of Russia and Ukraine. The data obtained showed that, at present, both European and Siberian roe deer inhabit this part of the range with predominance of the later: about 60% of individuals carry various Siberian haplotypes, most of which are similar to those in the populations of Capreolus pygargus from the Urals, Siberia, and the Far East. A great variety of mtDNA haplotypes of Siberian roe deer in Eastern Europe is undoubtedly caused by the heterogeneity of founder individuals (immigrants) that were imported from different parts of Asia. Some problems of coexistence of closely related species are discussed.  相似文献   

6.
7.
Understanding predator-prey dynamics is an important component of management strategy development for wildlife populations that are directly affected by predation. Ungulates often serve as a significant source of prey for many large mammal predators, and patterns of predation are known to influence population dynamics. Although black bear and wolf diets have been investigated extensively, prey preference has been less commonly examined, especially in analyses that take into account age class (i.e., juvenile and adult) of the ungulate prey. We examined black bear (Ursus americanus), wolf (Canis lupus), and hybrids (Canis spp.) prey preference in Ontario based on the availability of three ungulate species—elk (Cervus elaphus), moose (Alces alces), and white-tailed deer (Odocoileus virginianus). We analyzed the presence of prey items in black bear and wolf scats collected over 3 years by examining prey hair cuticular scale patterns. We applied correction factors to frequencies of occurrence of prey items found in predator scat and related diet composition to the availability of ungulates, determined by fecal pellet transect surveys. In addition, non-ungulate diet items were identified to obtain full diet composition profiles. We found that black bear diet consisted of more than 87% vegetation, and they were opportunistic, not selecting for any particular ungulate species in either adult or juvenile age class. Wolf diet was comprised mainly of ungulates (~?73.2%), muskrat (Ondatra zibethica; ~?8.5%), and beaver (Castor canadensis; ~?14.6%), and although moose were at least 1.5 times more abundant then each of the other ungulate prey species in the study area, wolves preferred elk, using moose less than expected. Although we found black bear diet to be opportunistic during the summer, wolves in our study heavily utilized both juvenile and adult ungulates, however, among ungulate species, displayed preference for elk. The preference displayed by wolves provides insight that wildlife managers can use to guide further investigation and assist with the development of strategies to ensure continued elk reintroduction success, and moose and white-tailed deer population sustainability.  相似文献   

8.
Despite the importance of roe deer as a host for Ixodes ticks in central Europe, estimates of total tick burden on roe deer are not available to date. We aimed at providing (1) estimates of life stage and sex specific (larvae, nymphs, males and females, hereafter referred to as tick life stages) total Ixodes burden and (2) equations which can be used to predict the total life stage burden by counting the life stage on a selected body area. Within a period of 1½ years, we conducted whole body counts of ticks from 80 hunter-killed roe deer originating from a beech dominated forest area in central Germany. Averaged over the entire study period (winter 2007–summer 2009), the mean tick burden per roe deer was 64.5 (SE ± 10.6). Nymphs were the most numerous tick life stage per roe deer (23.9 ± 3.2), followed by females (21.4 ± 3.5), larvae (10.8 ± 4.2) and males (8.4 ± 1.5). The individual tick burden was highly aggregated (k = 0.46); levels of aggregation were highest in larvae (k = 0.08), followed by males (k = 0.40), females (k = 0.49) and nymphs (k = 0.71). To predict total life stage specific burdens based on counts on selected body parts, we provide linear equations. For estimating larvae abundance on the entire roe deer, counts can be restricted to the front legs. Tick counts restricted to the head are sufficient to estimate total nymph burden and counts on the neck are appropriate for estimating adult ticks (females and males). In order to estimate the combined tick burden, tick counts on the head can be used for extrapolation. The presented linear models are highly significant and explain 84.1, 77.3, 90.5, 91.3, and 65.3% (adjusted R 2) of the observed variance, respectively. Thus, these models offer a robust basis for rapid tick abundance assessment. This can be useful for studies aiming at estimating effects of abiotic and biotic factors on tick abundance, modelling tick population dynamics, modelling tick-borne pathogen transmission dynamics or assessing the efficacy of acaricides.  相似文献   

9.
The fossil fallow deer Dama dama geiselana Pfeiffer from Neumark-Nord (Saxony-Anhalt, Germany) is upgraded to species level and discussed within the current taxonomy of recent and fossil fallow deer. Typical antler and skeletal characteristics are discussed in comparison with the recent Dama dama, Dama mesopotamica and the fossil species Dama clactoniana, Dama nestii and Dama rhenana. The phylogenetic relationship of fallow deer can be traced back to the Late Pliocene and distinguished morphologically from Cervus elaphus, Cervus nippon and Axis axis. Late and Middle Pleistocene finds from Germany are presented and discussed in the context of the finds from the Mediterranean region and Great Britain. The differences in antler morphology and bone dimensions in West German and North-East German fallow deer from the Late Pleistocene support the hypothesis of different immigration channels, on the one hand from the eastern Mediterranean along the Danube and on the other from the west along the Rhone and Rhine. In the Middle Pleistocene, Dama mesopotamica is considered as the typical fallow deer in the eastern Mediterranean, while in the west, Dama clactoniana is widespread. The hypothesis of immigration from the eastern Mediterranean is supported by the fossil record in Germany with the fallow deer from Edesheim. Conversely, Dama geiselana probably influenced East Mediterranean populations. Special tooth characteristics of Dama geiselana occur with lower frequency in Dama mesopotamica. In the Bronze Age, the fallow deer from Kastanas (Macedonia) shares antler characteristics, the high frequency of specific features of the scapula, and the astragalus with Dama geiselana. A relict population of Dama geiselana probably reached the Eastern Mediterranean at the beginning of the last cold stage.  相似文献   

10.
Change of carotenoid composition in crabs during embryogenesis   总被引:1,自引:0,他引:1  
Changes of the qualitative and quantitative compositions of carotenoids are studied at various development stages of the external hard roe, determined based on color differences, for the species C. opilio, P. camtschaticus, and P. platypus. It has been revealed that the major carotenoids of the new egg are astaxanthin and β-carotene. Intermediate products of transformation of β-carotene into astaxanthin are identified: echinenone, canthaxanthine, and phenicoxanthine. The carotenoid content per embryo for the new hard roe of C. opilio (the orange egg) amounted to 22.7 ng, of P. camtschaticus and P. platypus (the violet egg)—to 49.2 and 23.3 ng, respectively. In the hard roe at the later development stage (the brown egg) the carotenoid content was decreased to 13.1 ng in C. opilio and to 20.1 ng in P. camtschaticus. Development of embryos is accompanied by accumulation of esterified carotenoids and a decrease of β-carotene and astaxanthine concentrations in all studied species.  相似文献   

11.
The purpose of this study was to investigate genetic biomarkers of zoonotic enteric pathogens and antibiotic-resistant genes (ARGs) in the feces of white-tailed deer (Odocoileus virginianus) as related to proximity of deer to land that receives livestock manure or human waste biosolid fertilizers. Deer feces were collected in the St. Lawrence River Valley and Adirondack State Park of New York. Campylobacter spp. 16S rDNA was detected in 12 of 232 fecal samples (8 of 33 sites). Salmonellae were cultivated from 2 of 182 fecal samples (2 of 29 sites). Genetic virulence markers for Shiga-like toxin I (stx1) and enterohemolysin (hylA) were each detected in one isolate of Escherichia coli; E. coli O157 was not detected in any of 295 fecal samples. ARGs detected in deer feces included ermB (erythromycin-resistant gene; 9 of 295 fecal samples, 5 of 38 sites), vanA (vancomycin-resistant gene; 93 of 284 samples, 33 of 38 sites), tetQ (tetracycline-resistant gene; 93 of 295 samples, 25 of 38 sites), and sul(I) (sulfonamide-resistant gene; 113 of 292 samples, 28 of 38 sites). Genetic markers of pathogens and ARGs in deer feces were spatially associated with collection near concentrated animal feeding operations (CAFOs; Campylobacter spp., tetQ, and ermB) and land-applied biosolids (tetQ). These results indicate that contact with human waste biosolids or animal manure may be an important method of pathogen and ARG transmission and that deer in proximity to land-applied manure and human waste biosolids pose increased risk to nearby produce and water quality.  相似文献   

12.
Native generalist herbivores might limit plant invasion by consuming invading plants or enhance plant invasion by selectively avoiding them. The role of herbivores in plant invasion has been investigated in relation to plant native/introduced status, however, a knowledge gap exists about whether food selection occurs according to native/introduced status or to species. We tested preference of the native herbivore white-tailed deer (Odocoileus virginianus) for widespread and frequently occurring invasive introduced and native plants in the northeastern United States. Multiple-choice deer preference trials were conducted for the species and relative preference was determined using biomass consumption and feeding behavior. While more native than introduced plant biomass was consumed overall, deer food selection varied strongly by plant species. Results show consistent deer avoidance of several invasive introduced plants (Alliaria petiolata, Berberis thunbergii, and Microstegium vimineum) and a native plant (Dennstaedtia punctilobula). Other invasive introduced plants (Celastrus orbiculatus, Ligustrum vulgare, and Lonicera morrowii) and a native plant (Acer rubrum) were highly preferred. These results provide evidence that herbivore impacts on plant invaders depend on plant species palatability. Consequently, herbivore selectivity likely plays an important role in the invasion process. To the extent that herbivory impacts population demographics, these results suggest that native generalist herbivores promote enemy release of some plant invaders by avoiding them and contribute to biotic resistance of others by consuming them.  相似文献   

13.
Here, we present a camera trap survey at a Tibetan sacred mountain to ascertain the status and activity patterns of medium- to large-sized ground-dwelling mammalian fauna. We recorded 15 medium- to large-sized mammal species including 9 carnivores, 4 ungulates, 1 primate, and 1 rodent. Six of the species were categorized by IUCN as globally threatened. The results suggested that the sacred mountain was particularly important for alpine ungulates. The mean occupancy probabilities of blue sheep Pseudois nayaur, Chinese goral Naemorhedus griseus, Chinese serow Capricornis milneedwardsii, and alpine musk deer Moschus chrysogaster were 0.93, 0.91, 0.87, and 0.44 respectively. Domestic dog Canis familiaris also occurs widely across the mountain, with a mean occupancy of 0.60. Temporal activity patterns showed that alpine musk deer were mostly nocturnal, with most captures occurring at night. Chinese serow were active at all periods, with an activity peak at dawn. Blue sheep were strictly diurnal, without any captures at night. Although Chinese goral were predominantly diurnal, captures also frequently occurred at night. Our study not only unveiled a wildlife haven benefiting from religious beliefs about sacred mountains but also pointed to the critical situation of the fauna in the sacred site. The fauna in such sacred sites are diverse but poorly studied, and are subject to threats from domestic dogs, garbage pollution, and population isolation. Future conservation and management efforts in such areas should evaluate the population genetic diversity and assess the impact of non-lethal human disturbance on the wildlife communities.  相似文献   

14.
This work is directed at continuous studies of cyclicity of long-term (1980–2010) population dynamics of odonates in the basin of Lake Chany (in the south of Western Siberia). Four sympatric species of the genus Sympetrum have been investigated by spectral analysis method. The cycle spectra of population dynamics have been constructed for each species; the basic parameters of these cycles (period, phase, and power) have been calculated. Special number cycles have been found for each species. Interspecies differences increased in the direction from high to low frequencies of the spectrum. In the cases of similar cycles, interspecies differences have been shown in the ratio of cycle powers and/or phases: identical phases can indicate the ability of species to increase their number synchronously with any of close species; different phases can indicate the possibility of a small-numbered species to reach its maximum number against the minimum number of numerous species. A comparison of sympatric species spectra of the genera Coenagrion and Sympetrum has led to the conclusion that, the more similarity there is in environmental standards among species inside a genus (as for Sympetrum), the more specific the species frequency spectra are. All species of the genus Sympetrum can synchronize their number fluctuations with 2- to 3 and 4- to 5-year fluctuations of the local climate. Also specific synchronization with important nature-climatic rhythms was found for each species: for S. danae, with an 18-year rhythm of the level of Lake Chany and with a 16-year rhythm of June temperatures; for S. flaveolum, with a 24-year Brickner cycle, with an 8-year cycle of rainfall, and with a 28-year cycle of April and May temperatures; for S. vulgatum, with a 40- to 42-year cycle of the level of Lake Chany, with 12-year cycle of rainfall, and with a 7-year cycle of April and June temperatures; and for S. sanguineum, with a 7-year cycle of April and June temperatures. Perhaps the adaptation mechanism of species to each other and to environments is enclosed in the cyclicity of long-term fluctuations of species number.  相似文献   

15.
The alternative prey hypothesis predicts that predators respond both functionally and numerically (with a time lag) to fluctuations in the main prey abundance, which affects the survival of alternative prey. This pattern was found in northern Europe in the community formed by voles (Microtidae), red foxes (Vulpes vulpes) and roe deer (Capreolus capreolus). We studied the same predator—prey community in a temperate latitude where, according to the predation hypothesis, only the functional response of predators to changes in main prey availability should occur. In the years 1997–2007, in western Poland, we estimated the index of common vole (Microtus arvalis) abundance (burrow counts), the density of foxes (spotlight counts), the young production in foxes (young/adult ratio), the index of fox predation on fawns (prey remains near dens) as well as the reproduction index (fawn/female ratio) and density of roe deer (total counts). The vole abundance fluctuated considerably, the young production in foxes did not correlate with the main prey availability, but the density of foxes showed direct numerical response. The index of fox predation on fawns decreased with the vole abundance and negatively affected the fawn/female ratio in roe deer. Thus, the relationships between voles and foxes were not fully consistent with the predation hypothesis. The direct numerical response of foxes should tend to stabilize this predator—prey community. It is suggested, however, that responses showed by vole-eating predators in temperate latitudes may sometimes affect their alternative prey, including animals with unfavourable conservation status.  相似文献   

16.
It has long been theorized that deer mice (Peromyscus maniculatus) are a primary reservoir of Yersinia pestis in California. However, recent research from other parts of the western USA has implicated deer mice as spillover hosts during epizootic plague transmission. This retrospective study analyzed deer mouse data collected for plague surveillance by public health agencies in California from 1971 to 2016 to help elucidate the role of deer mice in plague transmission. The fleas most commonly found on deer mice were poor vectors of Y. pestis and occurred in insufficient numbers to maintain transmission of the pathogen, while fleas whose natural hosts are deer mice were rarely observed and even more rarely found infected with Y. pestis on other rodent hosts. Seroprevalence of Y. pestis antibodies in deer mice was significantly lower than that of several chipmunk and squirrel species. These analyses suggest that it is unlikely that deer mice play an important role in maintaining plague transmission in California. While they may not be primary reservoirs, results supported the premise that deer mice are occasionally exposed to and infected by Y. pestis and instead may be spillover hosts.  相似文献   

17.

Background

As a small artiodactyl, the roe deer (Capreolus capreolus L.) is characterized by biological plasticity and great adaptability demonstrated by their survival under a wide variety of environmental conditions. In order to depict patterns of phenotypic variation of roe deer body this study aims to quantify variation during ontogenetic development and determine how sex-specific reproductive investment and non-uniform habitat differences relate to phenotypic variation and do these differential investments mold the patterns of phenotypic variation through modular organisation.

Results

Patterns of phenotypic correlation among body traits change during the ontogeny of roe deer, with differential influence of sex and habitat type. Modularity was found to be a feature of closed habitats with trunk+forelimbs+hindlimbs as the best supported integration/modularity hypothesis for both sexes. The indices of integration and evolvability vary with habitat type, age and sex where increased integration is followed by decreased evolvability.

Conclusion

This is the first study that quantifies patterns of correlation in the roe deer body and finds pronounced changes in correlation structure during ontogeny affected by sex and habitat type. The correlation structure of the roe deer body is developmentally written over the course of ontogeny but we do not exclude the influence of function on ontogenetic changes. Modularity arises with the onset of reproduction (subadults not being modular) and is differentially expressed in males and females from different habitats. Both adult males and females show modularity in primordial, closed habitats. Overall, all these findings are important as they provide support to the idea that modularity can evolve at the population level and change fast within a species.
  相似文献   

18.
The polar night in the Arctic is characterized by up to six months of darkness, low temperatures and limited food availability. Biological data on species composition and abundance during this period are scarce due to the logistical challenges posed when sampling these regions. Here, we characterize the plankton community composition during the polar night using water samplers and zooplankton net samples (50, 64, 200, 1500 μm), supplemented by acoustics (ADCPs, 300 kHz), to address a previously unresolved question–which species of zooplankton perform diel vertical migration during the polar night? The protist community (smallest plankton fraction) was mainly represented by ciliates (Strombidiida). In the larger zooplankton fractions (50, 64, 200 μm) the species composition was represented primarily by copepod nauplii and small copepods (e.g., Microcalanus spp., Pseudocalanus spp. and Oithona similis). In the largest zooplankton fraction (>1500 μm), the euphausiid, Thysanoessa inermis, was the most abundant species followed by the chaetognath Parasagitta elegans. Classical DVM was not observed throughout the darkest parts of the polar night (November–mid-January), although, subtle vertical migration patterns were detected in the acoustic data. With the occurrence of a more distinct day–night cycle (i.e., end of January), acoustical DVM signals were observed, paralleled by a classical DVM pattern in February in the largest fractions of zooplankton net samples. We suggest that Thysanoessa spp. are main responsible for the acoustical migration patterns throughout the polar night, although, chaetognaths and copepods may be co-responsible.  相似文献   

19.

Aim

The management of the rapid expansion of wild ungulate populations is a challenging task and a societal priority. Using a progressive database of red (Cervus elaphus) and roe (Capreolus capreolus) deer colonization over the last three decades, we estimate the range expansion rates and the underlying mechanisms involved in the expansion patterns of red and roe deer populations at the south‐western edge of its European distribution.

Location

Mainland Portugal.

Methods

We compiled and grouped historical red and roe deer distribution data in three time periods (1981–1990, 1991–2000 and 2001–2010). We used generalized linear mixed models to evaluate how biotic and abiotic drivers determine the expansion patterns of red and roe deer.

Results

We reported a significant expansion of red and roe deer populations during the last three decades. The significant interaction between propagule pressure and land cover suggests that the effects of propagule pressure vary along environmental gradients. We found that the influence of livestock on red and roe deer expansion is idiosyncratic. Contrary to red deer, roe deer expansion was also influenced by climatic conditions. We did not detect any significant effect of human factors on the red and roe deer expansion.

Main conclusions

The synergistic effects between variables should be taken into account when studying the patterns of species expansion. Our study emphasize that policy makers should consider the spatial, temporal, ecological and societal nuances of species expansion in order to prioritize management measures and to allocate management budgets. Although concerted strategies to curtail species spread should mitigate red and roe deer economic and ecological impacts, these effects can be neutralized by a continuous rural exodus and the consequent forest and shrub encroachment.
  相似文献   

20.
Although mutualism between ants and flowering plants is wide spread, ant pollination has not evolved as a major pollination syndrome. So far ant pollination has been reported largely in herbaceous species, growing in warm and dry habitats. While studying pollination ecology of Syzygium species (Myrtaceae), growing in tropical forests of the Western Ghats, India, we observed one of the ant species, Technomyrmex albipes, to be the dominant floral visitor in S. occidentale (Bourd.) Chithra among a range of other insect (species of Xylocopa and Trigona, and Apis cerana) and bird visitors. We studied the role of ant species in pollination when compared to other floral visitors. The fruit set in flowers exclusively visited by T. albipes was significantly higher than those visited by any other visitor. The day and night exclusive pollination experiments allowing only T. albipes indicated diel pollination by T. albipes, which was the only active flower visitor during the night. The breeding system of the species was studied through controlled pollinations. The species is partially self-compatible and exhibits considerable autogamy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号