首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life-history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait-based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One-quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High-risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%–31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate-smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.  相似文献   

2.
3.
4.
Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one‐sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost‐effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost‐effectiveness was relatively unaffected by including climate change into decision‐making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.  相似文献   

5.
Impacts of tourism on threatened plant taxa and communities in Australia   总被引:6,自引:0,他引:6  
Summary Many Australian plant species and communities appear to be threatened by tourism. A review of management plans, recovery plans and a survey of experts found that tourism was considered to be a direct or indirect threatening process for 72 plant taxa. This is one fifth of threatened species for which threats have been identified. In addition, many more species are listed as threatened by weeds, trampling, pathogens, clearing and collecting. These are often indirect impacts of tourism, particularly in conservation reserves where tourism is the only commercial activity permitted. Tourism was also considered to be a threatening process for several plant communities. A lack of recognition of the importance of direct and indirect impacts of tourism may potentially hinder the conservation of plant species and communities both in Australia and overseas. It may also limit the effectiveness of sustainable tourism policies, particularly in conservation reserves.  相似文献   

6.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

7.
生物多样性正面临快速丧失的风险, 气候和土地利用变化已成为生物多样性的主要威胁之一。受威胁物种名录是区域和全球生物多样性保护的重要基础数据, 也是保护区规划的基础。作为一个生物多样性大国, 中国已开展了高等植物受威胁状况的系统性评估, 建立了受威胁植物名录, 为植物多样性保护规划提供了支撑。但由于数据和方法限制, 现有受威胁植物名录制定时未定量考虑全球变化对植物分布的潜在影响, 因而可能低估物种的受威胁等级及未来生物多样性的丧失风险。本研究基于高精度的木本植物分布数据和物种分布模型, 评估了未来气候和土地利用变化对木本植物分布的潜在影响。基于每个物种适宜分布区大小的变化, 并依据IUCN红色名录评估指标A3c的阈值标准, 更新了木本植物的受威胁等级, 补充了未来中国潜在受威胁木本植物名录。结果显示: 综合不同的气候变化情景(RCP 2.6、RCP 6.0和RCP 8.5)和扩散情景(完全扩散、20 km/10年、不扩散), 约12.9%-40.5%的木本植物被评估为受威胁物种。该名录将为制定木本植物保护优先级、开展保护区规划、提升全球变化情景下的生物多样性保护成效提供基础数据, 也为其他类群制定全面的受威胁物种名录提供参考。  相似文献   

8.
The Mediterranean climate regions of Western Australia and South Africa are recognized as global hot spots of diversity. Both are threatened by climate changes that are projected to have significant impacts on the quantity and variability of rainfall and affect key ecosystem drivers (e.g. fire regimes). This poses significant challenges to monitoring programs designed to detect these impacts. Effective monitoring of the impact of climate change on biodiversity (rather than individual species) requires a cross‐disciplinary, coordinated, focused and integrated approach. Ideally, this should involve a multidisciplinary team of specialists working to a common plan on the same set of plots. The contributions of ‘citizen scientists’ are potentially useful if well managed. Biodiversity per se (across all kingdoms of life, and including the levels of the gene, population and community) should be monitored, especially key species interactions and processes. Forestcheck is an example of such a program which has been applied in forests in south‐west Western Australia since 2001. In concert with measuring the direct impact of climate change on biodiversity and the indirect impact of factors that affect biodiversity (such as disease, invasive species, fire regime and habitat removal), there is a need for a proactive focus on creating, maintaining and monitoring resilience to climate change impacts in ecosystems. It is also necessary to monitor the effectiveness of management actions such as vegetation thinning, changes in fire regimes, species translocations and revegetation of farmland to link isolated protected areas in agricultural landscapes, remnant native vegetation in rangelands and extensive protected areas. A pluralist approach is recommended. This should include natural experiments, matched photographs where available, passive adaptive management, active adaptive management and traditional reductionist scientific investigation. The resultant synthesis of information from this range of sources is likely to be a predictive, robust and credible record of historical change.  相似文献   

9.
Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world''s 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.  相似文献   

10.
It is anticipated that anthropogenic climate change will lead to substantial reassembly within communities in coming decades as individual species shift their ranges to track optimal conditions for growth and survival. As species are lost and gained in communities, what are the consequences for functional trait diversity? Functional traits are the characteristics of species that affect individual performance and provide the vital link between biodiversity at the species level and ecosystem function. We investigated how projected changes in species richness in plant communities under climate change scenarios for the decade 2050 will affect the distribution and diversity of five functional traits. We aggregated range change projections made in Maxent for the decade 2050 across all species in the regional pool of littoral rainforest vines in eastern Australia (n = 163 species). The effect of richness changes on trait diversity was assessed in nine rainforest reserves along the east coast of Australia. Although richness was predicted to significantly decline across all communities, functional diversity remained stable, indicating a decoupling in response to climate change at these two different levels of biological organization. A high degree of redundancy in trait composition in communities may buffer against the loss of function in these plant communities. Scaling‐up our understanding of the impact of climate change from the species level to communities is a critical step towards developing conservation strategies aimed at preserving ecosystem function.  相似文献   

11.
Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.  相似文献   

12.
Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002-2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term.  相似文献   

13.
The myriad challenges facing biodiversity under climate change are reflected in the challenges facing managers planning for these impacts. An ever-expanding number of recommendations and tools for climate change adaptation exist to aid managers in these efforts, yet navigating these various resources can lead to information overload and paralysis in decision-making. Here we provide a synthesis of the key considerations, approaches, and available tools for integrating climate change adaptation into management plans. We discuss principal elements in climate change adaptation—incorporating uncertainty through scenario planning and adaptive management—and review three leading frameworks for incorporating climate change adaptation into place-based biodiversity conservation planning. Finally, we identify the following key questions needed for long-term conservation planning and review the associated tools and techniques needed to address them: (1) How is the climate projected to change in my study area?; (2) How are non-climatic stressors projected to change?; (3) How vulnerable are species to climate change impacts?; (4) How are species ranges likely to respond?; and (5) How are management strategies expected to affect outcomes? In doing so, we aim to aid natural resource managers in navigating the burgeoning field of climate change adaptation planning and provide managers a roadmap for managing biodiversity under climate change.  相似文献   

14.
Summary   In New South Wales, alien plants pose the second greatest threat to biodiversity behind land clearing and habitat loss, yet current weed management does not always address the biodiversity at risk or put in place mechanisms to ensure their recovery. The problem arises in part from an assumption that control programmes which focus only on the weed will result in a biodiversity benefit, rather than acknowledging the need for an assessment of the biodiversity at risk and subsequent incorporation of such information into management strategies. The New South Wales Threatened Species Conservation Act 1995 (TSC Act) has been used as a tool to integrate weed control and biodiversity management through the listing of weeds as key threatening processes and the development and implementation of Threat Abatement Plans (TAPs). Through this process, weed management is forced to focus on actual biodiversity conservation outcomes by directing control to areas where the likelihood of a positive biodiversity response is maximized. Bitou Bush ( Chrysanthemoides monilifera ssp. rotundata ) was the first weed species listed under the TSC Act as a key threatening process and to have a TAP prepared. Implementation of the Bitou Bush TAP is now potentially assisting the recovery of over 150 native plant species and 24 ecological communities at more than 160 sites. The TAP process is now being used for Lantana ( Lantana camara ) nationally and for all widespread weed species that threaten biodiversity within each of the 13 Catchment Management Authorities across New South Wales. By focusing the objectives of weed control on biodiversity protection and recovery, and ensuring that sites throughout the distribution of the weed are prioritized, threat reduction and conservation outcomes are more likely to occur at a landscape scale.  相似文献   

15.
The geographically isolated, environmentally unique and biologically diverse coral reefs of north-west Australia are under threat from climate change and other localised human impacts. Similar to many other regions around the world, effective mitigation of these threats through ecosystem-based marine spatial planning is currently constrained by a lack of knowledge of the extent and direction of dispersal of eggs, larvae, recruits, juveniles or adults among the coral reefs (termed population connectivity). Here, we present the outcomes of a series of consultations between Marine Protected Area planners, managers and scientists aimed at facilitating the integration of this connectivity knowledge into effective management guidelines and policy in north-west Australia. Through this process, we first synthesised current knowledge of population connectivity in the fields of oceanography, larval biology and population genetics, and then identified and answered to the best of our ability the most useful questions for the spatial planning of Marine Protected Area networks. Key findings indicate that these systems are likely ecologically independent for many coral reef organisms, with hard corals exhibiting the most localised dispersal of species studied so far. Thus, given that hard corals are also the habitat forming species, and that more widely dispersing species such as fish are likely less vulnerable to small scale disturbance, we propose that no-take areas that facilitate resilience of hard coral populations should maximise biodiversity more generally. This means no-take areas that are large enough to encompass routine dispersal distances of corals (10–20 km), and are spaced at similar distances, will not only maintain self-replenishment, but also aid recovery after disturbance through connectivity between no-take areas. The results can be applied in a regional and wider context, and provide a valuable template for transfer of scientific knowledge into effective policy.  相似文献   

16.
The mainland portion of the Adelaide Geosyncline (Mount Lofty and Flinders Ranges) has been postulated as an important arid‐zone climate refugium for Australia. To test the sensitivity of this putative Australian arid biome refugium to contemporary climate change, we compared Generalized Additive Modelling and MaxEnt distribution models for 20 vascular plant species. We aimed to identify shared patterns to inform priority areas for management. Models based on current climate were projected onto a hypothetical 2050 climate with a 1.5°C increase in temperature and 8% decrease in rainfall. Individual comparisons and combined outputs of logistic models for all 20 species showed range contraction to shared refugia in the Flinders Ranges and southern Mount Lofty Ranges. Modelling suggests the Flinders Ranges will experience species turnover while suitable climatic habitat will be retained in the Mount Lofty Ranges for the current suite of species. Fragmentation of the southern Mount Lofty Ranges poses management challenges for conserving species diversity with warming and drying. Although projected models must be interpreted carefully, they suggest the region will remain an important but threatened refugium for mesic species at a continental scale.  相似文献   

17.
The Amazon rainforest covers more than 60% of Bolivia’s lowlands, providing habitat for many endemic and threatened species. Bolivia has the highest rates of deforestation of the Amazon biome, which degrades and fragments species habitat. Anthropogenic habitat changes could be exacerbated by climate change, and therefore, developing relevant strategies for biodiversity protection under global change scenarios is a necessary step in conservation planning.In this research we used multi-species umbrella concept to evaluate the degree of habitat impacts due to climate and land cover change in Bolivia. We used species distribution modeling to map three focal species (Jaguar, Lowland Tapir and Lesser Anteater) and assessed current protected area network effectiveness under future climate and land cover change scenarios for 2050.The studied focal species will lose between 70% and 83% of their ranges under future climate and land-cover change scenarios, decreasing the level of protection to 10% of their original ranges. Existing protected area network should be reconsidered to maintain current and future biodiversity habitats.  相似文献   

18.
Freshwater turtles are one of the most threatened vertebrate groups. Climate change is a major threat to these species, with impacts affecting all life-history stages. There is currently a limited understanding of how changes in climate may alter the environmental triggers for hatching and emergence from the nests of freshwater turtle hatchlings. This precludes making predictions about how climate change may impact freshwater turtle recruitment success. The southwestern snake-necked turtle (Chelodina oblonga) is endemic to south-western Australia, a global biodiversity hotspot that has undergone severe climatic drying. Recruitment failure is thought to be occurring in many populations of the species. However, there is little understanding as to how environmental change may be influencing recruitment. This study aimed to: (1) determine the incubation duration and hatching and hatchling emergence success of C. oblonga, (2) determine if the species exhibits hatching or emergence synchrony and/or delayed emergence and (3) quantify the effects of temperature and rainfall on hatchling emergence. Using this information, the study assesses how climatic drying and warming may be impacting C. oblonga's early life-history. Between 2018 and 2020 nest sites were monitored around a large urban wetland with weekly assessments of egg and hatchling status. Incubation duration and hatching and hatchling emergence success were calculated, and generalized linear models were built to determine how temperature and/or rainfall predicted emergence. Hatchlings either emerged shortly after hatching or overwintered in the nest, and both hatching and emergence were asynchronous. Both emergence periods were positively associated with temperature and rainfall. This study reveals that incubation duration, hatching success, hatchling emergence and survival are all likely to be impacted by recent and projected climate change, and especially drying. Warming and drying are predicted for many temperate regions globally, and it is therefore important that their impacts on the early life history of freshwater turtles be better understood.  相似文献   

19.
Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species.  相似文献   

20.
It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2 degrees C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号