首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dibenzoylmethane (DBM) belongs to the flavonoid family and is a minor constituent of the root extract of licorice and the β-diketone analogue of curcumin. It exhibits antimutagenic, anticancer, and chemopreventive effects. Ornithine decarboxylase (ODC), the rate-limiting enzyme of the polyamine biosynthetic pathway, plays an important role in growth, proliferation, and transformation. Our previous studies showed ODC overexpression prevented etoposide-, paclitaxel-, and cisplatin-induced apoptosis. Here, we investigated one mechanism of DBM-induced apoptosis and the antiapoptotic effects of ODC during DBM treatment. We found that DBM induced apoptosis, promoted reactive oxygen species (ROS) generation, and disrupted the mitochondrial membrane potential (Δψ(m). N-acetylcysteine, a ROS scavenger, reduced DBM-induced apoptosis, which led to the loss of Δψ(m) due to reduced ROS. Overexpression of ODC in parental cells had the same effects as the ROS scavenger. The results demonstrated that DBM-induced apoptosis was a ROS-dependent pathway and ODC overexpression blocked DBM-induced apoptosis by inhibiting intracellular ROS production.  相似文献   

2.
Withaferin A (Wit A), a natural compound derived from the medicinal plant Withania somnifera, has been reported for the anti-tumor effects, including the inhibition of tumor cell growth, metastasis and angiogenesis. In this study, we investigated the effect of Wit A on radiation-induced apoptosis in human renal cancer cells (Caki cells). Our results showed that, compared with Wit A or radiation alone, the combination of both resulted in a significant enhancement of apoptosis, showing the increase in the cleavage of caspase-3 and PARP as well as sub-G1 cell population. In addition, reactive oxygen species (ROS) generation was correlated with the enhancement of radiation-induced apoptosis by Wit A. Wit A downregulated Bcl-2 protein levels and ectopic expression of Bcl-2 in Caki cells attenuated the apoptosis induced by Wit A plus radiation. Taken together, these results indicate that Wit A enhanced radiation-induced apoptosis in Caki cells through ROS generation, down-regulation of Bcl-2 and Akt dephosphorylation. Thus, our study shows that Wit A may be used as an effective radiosensitizer in cancer therapy.  相似文献   

3.
Both radiation injury and oxidation toxicity occur when cells are exposed to ion irradiation (IR), ultimately leading to apoptosis. This study was designed to determine the effect of beta-sitosterol (BSS) on early cellular damage in irradiated thymocytes and a possible mechanism of effect on irradiation-mediated activation of the apoptotic pathways. Thymocytes were irradiated (6 Gy) with or without BSS. Cell apoptosis and apoptosis-related proteins were evaluated. BSS decreased irradiation-induced cell death and nuclear DNA strand breaks while attenuating intracellular reactive oxygen species (ROS) and increasing the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). BSS decreased the release of cytochrome c from mitochondria to the cytosol and the mitochondrio-nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, BSS partially inhibited the radiation-induced increase of cleaved caspase 3 and cleaved PARP, and attenuated the activation of JNK and AP-1. In addition, evidence suggests that ROS generated by irradiation are involved in this course of cell damage. The results indicate that BSS confers a radioprotective effect on thymocytes by regulation of the intracellular redox balance which is carried out via the scavenging of ROS and maintenance of mitochondrial membrane stability.  相似文献   

4.
Several natural products have been demonstrated to both enhance the anti-tumor efficacy and alleviate the side effects of conventional chemotherapy drugs. Rhein, a main constituent of the Chinese herb rhubarb, has been shown to induce apoptosis in various cancer types. However, the exact pharmacological mechanisms controlling the influence of Rhein on chemotherapy drug effects in pancreatic cancer (PC) remain largely undefined. In this study, we found that Rhein inhibited the growth and proliferation of PC cells through G1 phase cell cycle arrest. Moreover, Rhein induced caspase-dependent mitochondrial apoptosis of PC cells through inactivation of the PI3K/AKT pathway. Combination treatment of Rhein and oxaliplatin synergistically enhanced apoptosis of PC cells through increased generation of intracellular reactive oxygen species (ROS) and inactivation of the PI3K/AKT pathway. Pre-treatment with the ROS scavenger N-acetyl-L-cysteine attenuated the combined treatment-induced apoptosis and restored the level of phosphorylated AKT, indicating that ROS is an upstream regulator of the PI3K/AKT pathway. The combination therapy also exhibited stronger anti-tumor effects compared with single drug treatments in vivo. Taken together, these data demonstrate that Rhein can induce apoptosis and enhance the oxaliplatin sensitivity of PC cells, suggesting that Rhein may be an effective strategy to overcome drug resistance in the chemotherapeutic treatment of PC.  相似文献   

5.
Cigarette smoke extracts (CSE) induce oxidative stress, an important feature in chronic obstructive pulmonary disease (COPD), and oxidative stress contributes to the poor clinical efficacy of corticosteroids in COPD patients. Carbocysteine, an antioxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on CSE-induced oxidative stress in bronchial epithelial cells as well as the comparison of these antioxidant effects of carbocysteine with those of fluticasone propionate are unknown. The present study was aimed to assess the effects of carbocysteine (10−4 M) in cell survival and intracellular reactive oxygen species (ROS) production (by flow cytometry) as well as total glutathione (GSH), heme oxygenase-1 (HO-1), nuclear-related factor 2 (Nrf2) expression and histone deacetylase 2 (HDAC-2) expression/activation in CSE-stimulated bronchial epithelial cells (16-HBE) and to compare these effects with those of fluticasone propionate (10−8 M). CSE, carbocysteine or fluticasone propionate did not induce cell necrosis (propidium positive cells) or cell apoptosis (annexin V-positive/propidium-negative cells) in 16-HBE. CSE increased ROS production, nuclear Nrf2 and HO-1 in 16-HBE. Fluticasone propionate did not modify intracellular ROS production, GSH and HDCA-2 but reduced Nrf2 and HO-1 in CSE-stimulated 16-HBE. Carbocysteine reduced ROS production and increased GSH, HO-1, Nrf2 and HDAC-2 nuclear expression/activity in CSE-stimulated cells and was more effective than fluticasone propionate in modulating the CSE-mediated effects. In conclusion, the present study provides compelling evidences that the use of carbocysteine may be considered a promising strategy in diseases associated with corticosteroid resistance.  相似文献   

6.
幽门螺杆菌(Helicobacter pylori,H.pylori)是一种选择性定植于胃上皮细胞的革兰氏阴性菌,是一种广泛传染的病原菌,也是诱导产生慢性胃炎的主要因素之一。近年来研究表明幽门螺杆菌感染诱导机体产生氧化应激反应,并通过各种逃逸机制避免被杀灭。幽门螺杆菌能不断刺激中性粒细胞和巨噬细胞表达活性氧和活性氮,导致体内活性氧和活性氮的过度积累,致使细胞的凋亡和胃粘膜损伤的加剧,这是导致胃炎发生及加重的重要因素。本文对幽门螺杆感染引起氧化应激反应的研究进展作简要综述。  相似文献   

7.
Sarsasapogenin is a steroidal sapogenin with antitumor properties. To explain the mechanism of its apoptotic effect, mitochondrial activity was assessed via a 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry (FCM) was used to estimate the changes in mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, and cellular-reduced glutathione (GSH) level. Laser scanning confocal microscope (LSCM) recorded instantaneous ROS burst after application of sarsasapogenin. Western blotting was used to determine the expression level and intracellular distribution of cytochrome c (cyt c). It is demonstrated that during apoptosis, ROS burst acted as an early event followed by depolarization of MMP, prolonged ROS generation, and significantly declined GSH level. Cyt c was upregulated and released from mitochondria to cytosol during the process. These findings show that a mitochondrial ROS burst is an early upstream apoptotic signal which may trigger the mitochondrial apoptotic pathway and play a vital role in sarsasapogenin-induced HepG2 cell apoptosis.  相似文献   

8.
The radiosensitizing effects of naturally occurring triterpenes were investigated in human lung cancer cells. Several quinone methide-containing triterpenes (QMTs) enhanced the cytotoxic effect of ionizing radiation (IR) and of these QMTs, celastrol (CE) had the greatest enhancing effect on IR-induced cell death in vitro. Additionally, the quinone methide moiety of CE was shown to be essential for CE-mediated radiosensitization; in contrast, dihydrocelastrol (DHCE), does not contain this moiety. Reactive oxygen species (ROS) production by IR was augmented in combination with CE, which was responsible for CE-mediated radiosensitization. CE induced the thiol reactivity and inhibited the activities of antioxidant molecules, such as thioredoxin reductase and glutathione. In vivo, nude mouse xenografting data also revealed that tumor growth delay was greater in mice treated with CE plus IR, compared with those treated with CE or IR alone. When DHCE, instead of CE, was combined with IR, tumor growth delay was similar to that in IR alone-treated mice. These results demonstrate that CE synergistically enhances the effects of IR and suggest the novel anticancer therapeutic use of CE in combination with radiation therapy.  相似文献   

9.
10.
《Free radical research》2013,47(12):1458-1471
Reactive oxygen species (ROS) are an important factor in the development of skin photodamage after ultraviolet A (UVA) radiation. A flavonoid antioxidant, baicalin, can selectively neutralize super-oxide anion (O2?) while having no significant effect on ?OH. Fibroblasts are a key component of skin dermis. In the present study, we investigated the protective effects of baicalin on human skin fibroblasts (HSFs) under UVA induced oxidative stress. Fluorescence microscopy and flow cytometry were used to assay the intracellular O2?, NO, ROS concentrations and the mitochondrial membrane potential. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The concentrations of cellular MDA, SOD, GSH, T-AOC, and 8-oxo-dG were also measured. Cellular apoptosis was measured by flow cytometry and caspase-3 detection. The results revealed that UVA radiation could cause oxidative stress and apoptosis in HSFs. Interestingly, the use of baicalin after UVA radiation signi?cantly reduced the level of intracellular O2?, NO, and ROS, stabilized the mitochondrial membrane potential, and attenuated production of MDA and 8-oxo-dG. These ef?ciently enhanced the antioxidative defense system and protected the HSFs from subsequent oxidative stress damage and apoptosis. In other words, baicalin decreased the excessive generation of intracellular ROS and NO, and elevated the cellular antioxidative defense, which eventually mitigate the UVA-induced apoptosis. Based on our results, baicalin may have applications in the treatment of skin photodamage caused by UVA irradiation.  相似文献   

11.
The bone protective effects of resveratrol have been demonstrated in several osteoporosis models while the underlying mechanism is largely unclear. In the present study, we evaluated the effects of resveratrol on differentiation and apoptosis of murine osteoclast progenitor RAW 264.7 cells. We found that resveratrol at non-toxic concentrations dose-dependently inhibited RANKL-induced osteoclast differentiation and induced apoptosis. Resveratrol has been shown to be an activator of Sirt1, a NAD+ dependent protein deacetylase, and has been demonstrated to mimic estrogen. However, we found that although Sirt1 protein was abundantly expressed in RAW264.7 cells, the specific Sirt1 inhibitor EX-527 could not attenuate the inhibition of osteoclastogenesis mediated by resveratrol. Also, the effects of resveratrol could not be attenuated by ICI-182780, a high affinity estrogen receptor antagonist. The central role of reactive oxygen species (ROS) in RANKL-induced osteoclast differentiation has recently been clarified. We found that resveratrol suppressed RANKL-induced ROS generation in a concentration dependent manner. We postulate that the direct inhibitory effects of resveratrol on osteoclastogenesis are mediated via inhibition of ROS generation.  相似文献   

12.
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.  相似文献   

13.
Masaya Arisaka 《FEBS letters》2010,584(5):1016-77
We have recently demonstrated that reactive oxygen species (ROS) play an important role in RAW264.7 cell apoptosis induced by cationic liposomes composed of stearylamine (SA-liposomes). In this study, we investigated whether protein kinase Cδ PKCδ) is involved in apoptosis induced by cationic liposomes. Tyrosine phosphorylation, nuclear localization, and cleavage of PKCδ were observed following the treatment of cells with SA-liposomes, suggesting that SA-liposomes activate PKCδ. Rottlerin, a specific inhibitor of PKCδ, inhibited ROS generation and also suppressed apoptosis. Cell surface proteoglycans may contribute to PKCδ activation by SA-liposomes. These findings suggest that PKCδ is strongly associated with apoptosis induced by SA-liposomes.  相似文献   

14.
15.
The human hepatoma cell line (HepG2) exhibited a dose and time-dependent apoptotic response following treatment with N-Nitrosopiperidine (NPIP) and N-Nitrosodibutylamine (NDBA), two recognized human carcinogens. Our results showed a significant apoptotic cell death (95%) after 24 h treatment with NDBA (3.5 mM), whereas it was necessary to use high doses of NPIP (45 mM) to obtain a similar percentage of apoptotic cells (86%). In addition, both extrinsic (caspase-8) and intrinsic pathway (caspase-9) could be implicated in the N-Nitrosamines-induced apoptosis. This study also addresses the role of reactive oxygen species (ROS) as intermediates for apoptosis signaling. A significant increase in ROS levels was observed after NPIP treatment, whereas NDBA did not induce ROS. However, N-acetylcysteine (NAC) did not block NPIP-induced apoptosis. All these findings suggest that NPIP and NDBA induce apoptosis in HepG2 cells via a pathway that involves caspases but not ROS.  相似文献   

16.
Homocysteine (Hcy) could induce apoptosis of vascular smooth muscle cells (VSMC). Asymmetric dimethylarginine (ADMA) has been thought as a novel risk factor for cardiovascular diseases. We hypothesized that ADMA mediates homocysteine-induced apoptosis of VSMC. In this experiment the level of ADMA in the medium measured by high-performance liquid chromatography (HPLC) was elevated when the apoptosis of T/G HA-VSMC was induced by Hcy which was detected by Hoechst33342 staining or flow cytometry (FCM) with Annecin V+Propidium Iodide (PI). Exogenous ADMA induced the apoptosis of VSMC. At the same time, ADMA elevated the level of intracellular reactive oxidative species (ROS) determined by fluorescent ROS detection kit. The activation of JNK and p38MAPK contributed to ADMA-induced apoptosis of VSMC. The present results suggest that endogenous ADMA is involved in apoptosis of VSMC induced by Hcy, and the effects of ADMA is related to elevation of intracellular ROS and activation of JNK/p38MAPK signaling pathways.  相似文献   

17.
Several lines of evidence support that beta-amyloid (Abeta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the effects of Sal B against beta-amyloid peptide 25-35 (Abeta(25-35))-induced neurotoxicity, focused mainly on the neurotoxic effects of Abeta(25-35) and the neuroprotective effects of Sal B on the expression of brain-pancreas relative protein (BPRP), which is a new protein and mainly expressed in brain and pancreas. Following exposure of PC12 cells to 20 microM Abeta(25-35), a marked reduction in the expression of BPRP was observed, accompanied with decreased cell viability and increased cell apoptosis, as well as increased ROS production and calcium influx. Treatment of the PC12 cells with Sal B significantly reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium. These data indicate that Abeta(25-35) decreases the expression of BPRP via enhanced formation of intracellular ROS and increased intracellular calcium, and that Sal B, as an anti-oxidant, protects against Abeta(25-35)-induced reduction in expression of BPRP through its effects on suppressing the production of ROS, calcium flux, and apoptosis. However, the role(s) of BPRP in AD and the definite mechanisms by which Sal B protects against Abeta(25-35)-induced reduction in the expression of BPRP require further study.  相似文献   

18.
Na HJ  Hudson SA  Bochner BS 《Cytokine》2012,57(1):169-174
IL-33 activates eosinophils directly via the ST2 receptor. Like IL-5, IL-33 induces eosinophilia and eosinophilic airway inflammation in mouse models and primes human eosinophil responses. Previously, we reported that IL-5 priming enhances Siglec-8 mediated mitochondrial and reactive oxygen species (ROS)-dependent eosinophilic apoptosis and eliminates caspase dependence of this cell death process. Whether IL-33, like IL-5, augments pro-apoptotic pathways involving receptors such as Siglec-8 and in a similar manner has not been explored. Annexin-V labeling was performed to detect apoptosis in human eosinophils pre-incubated with or without a range of concentrations of IL-33 and/or IL-5 in the presence or absence of Siglec-8 monoclonal antibody (mAb) 2C4 and inhibitors of caspases. Tetramethyl-rhodamine staining was used as a marker of mitochondrial membrane potential loss and injury. ROS production was determined by measuring the superoxide dismutase-inhibitable reduction of cytochrome c. Cleavage of poly(ADP-ribose) polymerase (PARP) was assessed using Western blotting. Eosinophils cultured alone or with mAb 2C4 underwent low levels of apoptosis at 24 h. 2C4-induced eosinophil apoptosis was markedly and equally enhanced after culture for 24 h with either IL-33 or IL-5, although IL-5 was more potent. Effects on apoptosis with IL-33 and IL-5 were synergistic. In contrast, percentages of cells exhibiting reduced mitochondrial membrane potential were greater with IL-33 than IL-5 and effects of these cytokines were also synergistic. Antimycin, an inhibitor of mitochondrial electron transport, almost completely inhibited 2C4-induced apoptosis with either IL-33 or IL-5. Surprisingly, 2C4-induced eosinophil ROS production was significantly enhanced with IL-5 but not IL-33. Siglec-8-mediated apoptosis in the presence of IL-33 was more sensitive in magnitude than IL-5 to inhibition by the pan-caspase inhibitor Z-VAD-FMK, yet both cytokine conditions were associated with PARP cleavage. These data demonstrate that IL-33 is as effective but less potent than IL-5 in enhancing Siglec-8-mediated eosinophil apoptosis, and can synergize with IL-5. Eosinophils primed by IL-33 and/or IL-5 in vivo would be expected to display enhanced susceptibility to undergoing Siglec-8-induced apoptosis.  相似文献   

19.
Su L  Zhao B  Lv X  Wang N  Zhao J  Zhang S  Miao J 《Life sciences》2007,80(11):999-1006
Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.  相似文献   

20.
Injury-induced by ionizing radiation (IR) severely reduces the quality of life of victims. The development of radiation protectors is regarded as one of the most resultful strategies to alleviate damages caused by IR exposure. In the present study, we investigated the radioprotective effects of the agonist of nucleotide-binding-oligomerization-domain-containing proteins 2 called murabutide (MBD) and clarified the potential mechanisms. Our results showed that the pretreatment with MBD effectively protected cultured cells and mice against IR-induced toxicity and the pretreatment with MBD in vitro and in vitro also inhibited apoptosis caused by IR exposure. The downregulation of γ-H2AX and the upregulation of ATR signaling pathways by MBD treatment indicated that the radioprotective effects of MBD were due to the stimulation of DNA damage response (DDR) pathway to repair DNA double-strand breaks caused by IR exposure. As the radioprotective effects of MBD were diminished by the ATR selective inhibitor rather than the ATM inhibitor, ATR pathway was confirmed to be a more crucial checkpoint pathway in mediating the stimulation of DDR pathway by MBD. Taken together, our data provide a novel and effective protector to relieve the injury induced by IR exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号