首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

2.
A thermophilic Bacillus sp. was isolated that secreted an extracellular, thermostable lipolytic enzyme. The enzyme was purified to 58 folds with a specific activity of 9730 units/mg of protein and yield of 10% activity by ammonium sulphate precipitation, Phenyl Sepharose chromatography, gel-permeation followed by Q Sepharose chromatography. The relative molecular mass of the protein was determined to be 61 kDa by SDS-PAGE and approximately 60 kDa by gel permeation chromatography. The enzyme showed optimal activity at 60–65 C and retained 100% activity after incubation at 60 C and pH 8.0 for 1 h. The optimum pH was determined to be 8.5. It exhibited 50% of its original activity after 65 min incubation at 70 C and 23 min incubation at 80 C. Catalytic function of lipase was activated by Mg++ (10 mM), while mercury (10 mM) inactivated the enzyme completely. No effect on enzyme activity was observed with trypsin and chymotrypsin treatment, while 50% inhibition was observed with thermolysin. It was demonstrated that PMSF, SDS, DTT, EDTA, DEPC, βME (100 mM each) and eserine (10 mM) inhibited the activity of the lipolytic enzyme. With p-nitrophenyl laurate as a substrate, the enzyme exhibited a K m and V max of 0.5 mM and 0.139 μM/min/ml. The enzyme showed preference for short chain triacylglycerol and hydrolyzes triolein at all positions. In contrast to other thermostable Bacillus lipases, this enzyme has very low content of hydrophobic amino acids (22.58 %). Immunological studies showed that the active site and antigen-binding site of enzyme do not overlap.  相似文献   

3.
This work is a report of the characterization of an alkaline lipolytic enzyme isolated from Bacillus subtilis DR8806. The extracellular extract was concentrated using ammonium sulfate, and ultrafiltration. The active enzyme was purified by Q-sepharose ion exchange chromatography. The molecular mass of the enzyme was estimated to be 60.25 kDa based on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). The optimum pH and temperature of this enzyme were observed to be 8.0 and 50 °C, respectively. The enzyme exhibited a half-life of 72 min at its optimum temperature. It was stable in the presence of metal ions (10 mM) such as Ca2+, K+ and Na+, whereas Cu2+, Fe2+, Zn2+, Mn2+, Co2+, Mg2+ and Hg2+ were found to have inhibitory effects. However, the enzyme activity was not affected significantly by 1% Triton X-100. The study of substrate specificity showed that the purified enzyme has a preferential specificity for small ester of p-nitrophenyl acetate (C2), and it was the most efficiently hydrolyzed substrate as compared to the other esters. The kinetic parameters showed that the enzyme has Km of 4.2 mM and Vmax of 151 μmol min−1 mg−1 for p-nitrophenyl acetate. The hydrolysis rates of the fluorescence substrates were increased in the presence of the purified enzyme. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.  相似文献   

4.
A psychrophilic bacterium Psychrobacter sp. C18 previously isolated from the Southern Okinawa Trough deep-sea sediments showed extracellular lipolytic activity towards tributyrin. A genomic DNA library was constructed and screened to obtain the corresponding lipase gene. The sequenced DNA fragment contains an open reading frame of 945 bp, which was denoted as the lipX gene, from which a protein sequence LipX was deduced of 315 amino acid residues with a molecular mass of 35,028 Da. This protein contained the bacterial lipase GNSMG (GxSxG, x represents any amino acid residue) and HG consensus motifs. The recombinant pET28a(+)/lipX gene was overexpressed in heterologous host Escherichia coli BL21 (DE3) cells to overproduce the lipase protein LipXHis with a 6× histidine tag at its C-terminus. Nickel affinity chromatography was used for purification of the expressed recombinant lipase. The maximum lipolytic activity of the purified recombinant lipase was obtained at temperature of 30°C and pH 8.0 with p-nitrophenyl myristate (C14) as a substrate. Thermostability assay indicated that the recombinant LipXHis is a cold-adapted lipase, which was active in 10% methanol, ethanol, acetone and 30% glycol, and inhibited partially by Zn2+, Co2+, Mn2+, Fe3+ and EDTA. Most non-ionic detergents, such as DMSO, Triton X-100, Tween 60 and Tween 80 enhanced the lipase activity but 1% SDS completely inhibited the enzyme activity. Additionally, the highest lipolytic rate of the recombinant LipXHis lipase was achieved when p-nitrophenyl myristate was used as a substrate, among all the p-nitrophenyl esters tested.  相似文献   

5.
The gene encoding a cold-adapted, organic solvent stable lipase from a local soil-isolate, mesophilic Staphylococcus epidermidis AT2 was expressed in a prokaryotic system. A two-step purification of AT2 lipase was achieved using butyl sepharose and DEAE sepharose column chromatography. The final recovery and purification fold were 47.09 % and 3.45, respectively. The molecular mass of the purified lipase was estimated to be 43 kDa. AT2 lipase was found to be optimally active at pH 8 and stable at pH 6–9. Interestingly, this enzyme demonstrated remarkable stability at cold temperature (<30 °C) and exhibited optimal activity at a temperature of 25 °C. A significant enhancement of the lipolytic activity was observed in the presence of Ca2+, Tween 60 and Tween 80. Phenylmethylsulfonylfluoride, a well known serine inhibitor did not cause complete inhibition of the enzymatic activity. AT2 lipase exhibited excellent preferences towards long chain triglycerides and natural oils. The lipolytic activity was stimulated by dimethylsulfoxide and diethyl ether, while more than 50 % of its activity was retained in methanol, ethanol, acetone, toluene, and n-hexane. Taken together, AT2 lipase revealed highly attractive biochemical properties especially because of its stability at low temperature and in organic solvents.  相似文献   

6.

Background

In addition to their general role in the hydrolysis of storage lipids, bumblebee lipases can participate in the biosynthesis of fatty acids that serve as precursors of pheromones used for sexual communication.

Results

We studied the temporal dynamics of lipolytic activity in crude extracts from the cephalic part of Bombus terrestris labial glands. Extracts from 3-day-old males displayed the highest lipolytic activity. The highest lipase gene expression level was observed in freshly emerged bumblebees, and both gene expression and lipase activity were lower in bumblebees older than 3 days. Lipase was purified from labial glands, further characterized and named as BT-1. The B. terrestris orthologue shares 88% sequence identity with B. impatiens lipase HA. The molecular weight of B. terrestris lipase BT-1 was approximately 30 kDa, the pH optimum was 8.3, and the temperature optimum was 50°C. Lipase BT-1 showed a notable preference for C8-C10 p-nitrophenyl esters, with the highest activity toward p-nitrophenyl caprylate (C8). The Michaelis constant (Km) and maximum reaction rate (Vmax) for p-nitrophenyl laurate hydrolysis were Km = 0.0011 mM and Vmax = 0.15 U/mg.

Conclusion

This is the first report describing neutral lipase from the labial gland of B. terrestris. Our findings help increase understanding of its possible function in the labial gland.  相似文献   

7.
An extracellular lipase from Nomuraea rileyi MJ was purified 23.9-fold with 1.69% yield by ammonium sulfate precipitation followed by Sephacryl S-100 HR column chromatography. By mass spectrometry and SDS-polyacrylamide gel electrophoresis, the molecular weight of the homogenous lipase was 81 kDa. The N-terminal sequence was determined as LeuSerValGluGlnThrLysLeuSerLysLeuAlaTyrAsnAsp and it showed no homology to sequences of known lipases. The optimum pH and temperature for activity were 8.0 and 35 °C, respectively. The enzyme was stable in the pH range 7.0-9.0 and at 15-35 °C for 1 h. Higher activity was observed in the presence of surfactants, Na+, NH4+ ions, NaN3 and ethylenediaminetetraacetic acid (EDTA), while Co2+ and Cu2+ ions, cysteine and dithiothreitol (DTT) strongly inhibited activity. The purified lipase hydrolyzed both synthetic and natural triglycerides with maximum activity for trilaurin and coconut oil, respectively. It also hydrolyzed esters of p-nitrophenol (pNP) with highest activity for p-nitrophenyl caprate (pNPCA). The purified lipase was found to promote N. rileyi spore germination in vitro in that germination reached 98% in conidial suspensions containing purified lipase at 2.75 U. Moreover, it enhanced toxicity of N. rileyi toward Spodoptera litura larvae with mortality via topical application reaching 63.3% at 4-10 days post-treatment which calculated to be 2.7 times higher than the mortality obtained using conidial suspensions alone.  相似文献   

8.
Burkholderia multivorans V2 (BMV2) isolated from soil was found to produce an extracellular solvent tolerant lipase (6.477 U/mL). This lipase exhibited maximum stability in n-hexane retaining about 97.8% activity for 24 h. After performing statistical optimization of medium components for lipase production, a 2.2-fold (14 U/mL) enhancement in the lipase production was observed. The crude lipase from BMV2 was partially purified by ultrafiltration and gel permeation chromatography with 24.64-fold purification. The Km and Vmax values for partially purified BMV2 lipase were found to be 1.56 mM and 5.62 μmoles/mg min. The metal ions Ca2+, Mg2+ and Mn2+ had stimulatory effect on lipase activity, whereas Cu2+, Fe2+ and Zn2+ strongly inhibited the lipase activity. EDTA and PMSF at 10 mM concentration strongly inhibited the lipase activity. Non-ionic and anionic surfactants stimulated the lipase activity. BMV2 lipase was proved to be efficient in synthesis of ethyl butyrate ester under non-aqueous environment.  相似文献   

9.

Background

Lipases differ from one another with respect to certain properties, and such differences can be very important for various industrial applications. Considering the rapidly developing nature of the relevant industries, there is a need for new lipases with characteristics differing from those of existing enzymes.

Methods

In this study, a bacterium was isolated from both the surface mucus layer and gills of rainbow trout (Oncorhynchus mykiss) from Giresun, Turkey. The bacterial species was identified based on its morphological and physiochemical properties, and on its 16S rDNA sequence. The qualitative activity of the bacterial lipase was determined on Rhodamine B and Tween-20 agar plates. The lipase was partially purified from the supernatant of bacterial cultures, and then characterized.

Results

The bacterial strain was identified as Acinetobacter sp. strain SU15. The enzyme from Asp-SU15 exhibits maximum activity toward p-nitrophenyl dodecanoate (C12) at 40°C and pH 8.0. The specific activity of the lipase was calculated to be 10.059 U·L–1. The molecular mass of the enzyme was determined to be ~62 kDa via SDS-PAGE. However, native-PAGE indicated that the enzyme forms very large active aggregates, with molecular masses exceeding 250 kDa. The catalytic activity of the enzyme is enhanced in the presence of Co2+, Ca2+, and methanol, but is partially inhibited by Ni2+, ethyl acetate, and butanol.

Conclusions

Further research could examine possible industrial applications for the lipase from Asp-SU15.
  相似文献   

10.
cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35–37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.  相似文献   

11.
In Thermus thermophilus HB27 cultures the localisation of lipolytic activity is extracellular, intracellular and membrane bound, with low percentage for the former. Therefore, the extracellular secretion must be increased in order to simplify the downstream process and to reduce the economic cost. This study focuses on the design of an innovative operational strategy to increase extracellular lipolytic enzyme production by T. thermophilus HB27 at bioreactor scale. In order to favour its secretion, the effect of several operational variables was evaluated. Among them, the presence of oils in the culture medium leads to improvements in growth and lipolytic enzyme activity. Sunflower oil is the most efficient inducer showing better results when added after 10 h of growth. On the other hand, although surfactants lead to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. Thus, by addition of surfactants at the stationary phase, a release of intracellular and membrane enzyme which increases the extracellular enzyme proportion is detected. Based on these results, strategies with successive addition of oil and surfactant in several culture phases in shake flask are developed and verified in a laboratory scale stirred tank bioreactor.  相似文献   

12.
The possibility of using Bacillus flexus XJU-1 lipase in detergent preparations was studied. The enzyme was monomeric protein as confirmed by liquid chromatography-mass spectrometry and its molecular weight was 15.95 kDa. The lipase showed optimum activity at pH 10.0 and was 100% stable for 24 h at pH 10.0 and 11.0. It exhibited maximum activity at 70°C and retained more than 70% of the initial activity at 60, 70 and 80°C for 24 h. The activity was stimulated by Ca2+, Ba2+, Mg2+ and Co2+, whereas 50% of the initial activity was lost with Fe3+ and Hg2+. The activity was inhibited by 10 mM N-bromosuccinimide and tosyl-L-lysylchloromethylketone, while N-ethylmaleimide, phenylmethylsulphonylfluoride and urea did not show any effect. The enzyme significantly hydrolysed olive, cottonseed, sunflower, groundnut, and gingelly oils. With p-nitrophenyl palmitate, Vmax and Km were 62.5 U/mL and 2.25 mM, respectively. The lipase maintained its stability in Tween-80, Triton-100 and H2O2 at 1%, but an activation of 10% and a reduction of 15% in relative activity were observed with NaClO and sodium dodecyl sulphate, respectively. The enzyme retained maximum storage stability for 20 days at ?20, 4 and 30°C. In the presence of 0.7% (w/v) Ariel, Henko, Super wheel, Tide plus and Rin, a retention of more than 84.90% initial activity was recorded after 24 h at 60°C. The supplementation of the lipase to the detergents improved the olive oil stain removal. These properties suggested the present enzyme as a potential additive for detergent preparations.  相似文献   

13.
《Process Biochemistry》2007,42(3):384-391
An extracellular lipase from Yarrowia lipolytica (YlLip2) has been purified by ion exchange chromatography on Q sepharose FF, followed by hydrophobic interaction chromatography on butyl sepharose FF. SDS-PAGE showed that the molecular weight of this lipase is about 38 kDa. N-terminal amino acid sequencing and MALDI-TOF mass spectral analysis showed that this lipase is encoded by gene LIP2 (GenBank accession no. AJ012632). Enzymatic deglycosylation showed that this lipase is a glycosylated protein which contains about 12% sugar. The corresponding deglycosylated lipase remained 88% specific activity of untreated lipase. There was a high amino acid sequence identity (91%) between YlLip2 and Candida deformans lipase CdLip1 (GenBank accession no. AJ428393). The optima temperature and pH for the purified lipase was 40 °C and 8.0, respectively. The lipase showed a preference for long chain fatty acid methyl esters (C12–C16), with the highest activity toward methyl myristate (C14). Lipase activity was stimulated by Ca2+ and Mg2+ and inhibited by Zn2+, Ni2+ and Cu2+, whereas EDTA had no effect on its activity. A 0.1% of Tween 80 and Span 65 increased slightly the enzyme activity and SDS inhibited it.  相似文献   

14.
《Process Biochemistry》2014,49(10):1673-1681
The biosynthesis of esters is currently of much commercial interest because of the increasing popularity and demand for natural products among consumers. Biotransformation and enzymatic methods of ester synthesis are more effective when performed in non-aqueous media. In present study, an organic solvent stable Pseudomonas sp. DMVR46 lipase was partially purified by acetone precipitation and ion exchange chromatography with 28.95-fold purification. The molecular mass of the lipase was found to be ∼32 kDa. The partially purified lipase was optimally active at 37 °C and pH 8.5. The enzyme showed greater stability toward organic solvents such as isooctane, cyclohexane and n-hexane retaining more than 70% of its initial activity. The metal ions such as Ca2+, Ba2+ and Mg2+ had stimulatory effects on lipase activity, whereas Co2+ and Zn2+ strongly inhibited the activity. Also lipase exhibited variable specificity/hydrolytic activity toward different 4-nitrophenyl esters. DMVR46 lipase was further immobilized into AOT-based organogels used for the synthesis of flavor ester pentyl valerate in presence of organic solvents. The organogels showed repeated use of enzyme with meager loss of activity even upto 10 cycles. The solvent-stable lipase DMVR46 thus proved to be an efficient catalyst showing an attractive potency for application in biocatalysis under non-aqueous environment.  相似文献   

15.
An extracellular lipase gene ln1 from thermophilic fungus Thermomyces lanuginosus HSAUP0380006 was cloned through RT-PCR and RACE amplification. Its coding sequence predicted a 292 residues protein with a 17 amino acids signal peptide. The deduced amino acids showed 78.4% similarity to another lipase lgy from T. lanuginosus while shared low similarity with other fungi lipases. Higher frequencies hydrophobic amino acids related to lipase thermal stability, such as Ala, Val, Leu and Gly were observed in this lipase (named LN). The sequence, -Gly-His-Ser-Leu-Gly-, known as a lipase-specific consensus sequence of mould, was also found in LN. High level expression for recombinant lipase was achieved in Pichia pastoris GS115 under the control of strong AOX1 promoter. It was purified to homogeneity through only one step DEAE-Sepharose anion exchange chromatography and got activity of 1328 U/ml. The molecular mass of one single band of this lipase was estimated to be 33 kDa by SDS-PAGE. The enzyme was stable at 60 °C and kept 65% enzyme activity after 30 min incubation at 70 °C. It kept half-activity after incubated for 40 min at 80 °C. The optimum pH for enzyme activity was 9.0 and the lipase was stable from pH 8.0 to 12.0. Lipase activity was enhanced by Ca2+ and inhibited by Fe2+, Zn2+, K+, and Ag+. The cell-free enzyme hydrolyzed and synthesized esters efficiently, and the synthetic efficiency even reached 81.5%. The physicochemical and catalytic properties of the lipase are extensively investigated for its potential industrial applications.  相似文献   

16.
A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65 degrees C in 3 h in the presence of a molecular sieve (3 angstroms). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 orNH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel-bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg2+ or NH4+ ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).  相似文献   

17.
An extracellular lipase produced by the sapstaining fungus Ophiostoma piceae 387N in a liquid medium was purified to homogeneity using ammonium sulphate and acetone fractionation, hydrophobic interaction and anion exchange chromatography. The overall purification based on lipase activity was 5200-fold with a yield of 26%. The molecular mass of the lipase was 35kDa, as determined by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), and 37 kDa, as measured by size exclusion chromatography. The purified enzyme was resolved as three bands at pI values of 4.3, 4.1 and 3.8 in IEF (isoelectric focusing) gels. Lipolytic stain demonstrated that all three bands were lipolytically active. The N-terminal amino acid sequence was determined asD1-V2-S3-V4-T5-T6-T7-D8-I9-D10-A11-L12-A13-F14-F15-T16-Q17-W18-A19-G20 . The lipase was shown to be glycosylated, containing 10.1% carbohydrate. The lipase was stable between pH 4 and pH 8 and at temperatures below 40°C. The lipase activity had a pH optimum of approximately 5 and a temperature optimum of 30°C. The enzyme activity was not influenced by N-ethylmaleimide, -mercaptoethanol or dithiothreitol, was enhanced by Ca2+ or Mn2+, but was severely inhibited by Hg2+, Fe3+, butyric acid, caproic acid, diethyl pyrocarbonate, and diethyl p-nitrophenyl phosphate. The lipase hydrolysed mainly triglycerides, although some activity was measured on waxes and cholesteryl esters. It belongs to a group of 1 (3) positional specific lipases. It showed little activity for substrates with short chain fatty acids (C2–C6), but demonstrated high specificity for substrates with intermediate and long chain fatty acid residues (C10–C18).  相似文献   

18.
A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40–60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8–9. Metal ions such as Ca2+, Mn2+, Na+, and K+ enhanced the lipase activity, but Mg2+, Zn2+, and Fe2+ inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.  相似文献   

19.
An extracellular lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) from Pseudomonas aeruginosa KKA-5 hydrolyzed castor oil by 90%. Purification of this castor oil-hydrolyzing lipase included ammonium sulfate precipitation and successive hydroxylapatite column chromatography. The enzyme was purified 518-fold. It was homogeneous electrophoretically and its molecular weight was estimated to be 30 kDa. The enzyme was stable up to 45°C and retained its activity in the alkaline pH range. Lipase was highly stable in the presence of aqueous organic solvents like methanol and ethanol. It was weakly inhibited in the presence of acetone. The anionic surfactant, sodium dodecyl sulfate, was inhibitory while the cationic surfactants, Triton X-100 and Tween-80 appreciably enhanced activity. Lipase was stabilized significantly by Ca2+. Inactivation of the enzyme by EDTA was overcome by sequential CaCl2 treatment. This finding suggests the existence of a calcium-binding site in Pseudomonas aeruginosa KKA-5 lipase. Received 22 January 1998/ Accepted in revised form 27 April 1998  相似文献   

20.
《Plant science》1988,55(3):205-211
Potato (Solanum tuberosum L.) leaves were shown to contain a lipolytic enzyme activity which is stimulated by treatment with purified trypsin, pronase, and to a lesser degree by chymotrypsin. This protease-stimulated activity was stable over a wide range of pH values. Lipolytic enzyme activity also appeared to be regulated by pH, with a pronounced stimulation at pH 6.0 ± 0.5 and a subsequent inactivation at pH 8.0–9.0. This pH stimulation was slightly by ethylene diamine tetracetic acid (EDTA), and was inhibited by Ca2+. Although leupeptin slightly inhibited the pH stimulation, two other protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) and soybean trypsin inhibitor showed no effect. While some of the lipolytic enzyme activitiesn potato leaves (those detected by 1-acyl-2-[6-[(7-nitro-2,1,3 benzoxadiazol-4-yl) amino]-caproyl] phosphatidylcholine (C6-NBD-PC) hydrolysis) are stimulated by protease or pH treatment, others (those detected by 4-methylumbelliferyl laurate (4MUL) hydrolysis) are inactivated by them. The possible physiological significance of this apparent proteolytic activation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号