首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmentally aged chicken embryo cells which hyperproduce interferon (IFN) when induced were used to quantify IFN production and its suppression by eight strains of type A influenza viruses (AIV). Over 90% of the IFN-inducing or IFN induction-suppressing activity of AIV populations resided in noninfectious particles. The IFN-inducer moiety of AIV appears to preexist in, or be generated by, virions termed IFN-inducing particles (IFP) and was detectable under conditions in which a single molecule of double-stranded RNA introduced into a cell via endocytosis induced IFN, whereas single-stranded RNA did not. Some AIV strains suppressed IFN production, an activity that resided in a noninfectious virion termed an IFN induction-suppressing particle (ISP). The ISP phenotype was dominant over the IFP phenotype. Strains of AIV varied 100-fold in their capacity to induce IFN. AIV genetically compromised in NS1 expression induced about 20 times more IFN than NS1-competent parental strains. UV irradiation further enhanced the IFN-inducing capacity of AIV up to 100-fold, converting ISP into IFP and IFP into more efficient IFP. AIV is known to prevent IFN induction and/or production by expressing NS1 from a small UV target (gene NS). Evidence is presented for an additional downregulator of IFN production, identified as a large UV target postulated to consist of AIV polymerase genes PB1 + PB2 + PA, through the ensuing action of their cap-snatching endonuclease on pre-IFN-mRNA. The products of both the small and large UV targets act in concert to regulate IFN induction and/or production. Knowledge of the IFP/ISP phenotype may be useful in the development of attenuated AIV strains that maximally induce cytokines favorable to the immune response.  相似文献   

2.
Avian influenza virus (AIV) A/turkey/Oregon/71-SEPRL (TK/OR/71-SEPRL) (H7N3) encodes a full-length NS1 protein and is a weak inducer of interferon (IFN). A variant, TK/OR/71-delNS1 (H7N3), produces a truncated NS1 protein and is a strong inducer of IFN. These otherwise genetically related variants differ 20-fold in their capacities to induce IFN in primary chicken embryo cells but are similar in their sensitivities to the action of IFN. Furthermore, the weak IFN-inducing strain actively suppresses IFN induction in cells that are otherwise programmed to produce it. These phenotypic differences are attributed to the enhanced IFN-inducing capacity that characterizes type A influenza virus strains that produce defective NS1 protein. The pathogenesis of these two variants was evaluated in 1-day-old and 4-week-old chickens. The cell tropisms of both viruses were similar. However, the lesions in chickens produced by the weak IFN inducer were more severe and differed somewhat in character from those observed for the strong IFN inducer. Differences in lesions included the nature of inflammation, the rate of resolution of the infection, and the extent of viral replication and/or virus dissemination. The amelioration of pathogenesis is attributed to the higher levels of IFN produced by the variant encoding the truncated NS1 protein and the antiviral state subsequently induced by that IFN. The high titer of virus observed in kidney tissue ( approximately 10(9) 50% embryo lethal doses/g) from 1-day-old chickens infected intravenously by the weak IFN-inducing strain is attributed to the capacity of chicken kidney cells to activate the hemagglutinin fusion peptide along with their unresponsiveness to inducers of IFN as measured in vitro. Thus, the IFN-inducing capacity of AIV appears to be a significant factor in regulating the pathogenesis, virulence, and viral transmission of AIV in chickens. This suggests that the IFN-inducing and IFN induction suppression phenotypes of AIV should be considered when characterizing strains of influenza virus.  相似文献   

3.
The growth of adeno-associated virus (AAV) is dependent upon helper functions provided by adenovirus. We investigated the role of adenovirus early gene region 1 in the AAV helper function by using six adenovirus type 5 (Ad5) host range mutants having deletions in early region 1. These mutants do not grow in human KB cells but are complemented by and grow in a line of adenovirus-transformed human embryonic kidney cells (293 cells); 293 cells contain and express the Ad5 early region 1 genes. Mutants having extensive deletions of adenovirus early region 1a (dl312) or regions 1a and 1b (dl313) helped AAV as efficiently as wild-type adenovirus in 293 cells, but neither mutant helped in KB cells. No AAV DNA, RNA, or protein synthesis was detected in KB cells in the presence of the mutant adenoviruses. Quantitative blotting experiments showed that at 20 h after infection with AAV and either dl312 or dl313 there was less than one AAV genome per cell. In KB cells infected with AAV alone, the unreplicated AAV genomes were detected readily. Apparently, infection with adenovirus mutant dl312 or dl313 results in degradation of most of the infecting AAV genomes. We suggest that at least an adenovirus region 1b product (and perhaps a region 1a product also) is required for AAV DNA replication. This putative region 1b function appears to protect AAV DNA from degradation by an adenovirus-induced DNase. We also tested additional Ad5 mutants (dl311, dl314, sub315, and sub316). All of these mutants were inefficient helpers, and they showed varying degrees of multiplicity leakiness. dl312 and dl313 complemented each other for the AAV helper function, and each was complemented by Ad5ts125 at the nonpermissive temperature. The defect in region 1 mutants for AAV helper function acts at a different stage of the AAV growth cycle than the defect in the region 2 mutant ts125.  相似文献   

4.
Adenoviruses with nonidentical terminal sequences are viable.   总被引:2,自引:1,他引:1       下载免费PDF全文
R Lipp  F L Graham 《Journal of virology》1989,63(12):5133-5141
Adenovirus genomes consist of linear DNA molecules containing inverted terminal repeat sequences (ITRs) of 100 to 200 base pairs. The importance of identical termini for viability of adenoviruses was investigated. The viral strains used in this study were wild-type adenovirus type 5 (Ad5) and a variant Ad2 strain with termini which were distinct from those of all other human adenoviruses sequenced to date. A hybrid virus (sub54), obtained by recombination between Ad2 and Ad5, derived the left 42 to 52% of its genome from Ad2 and the right 58 to 48% from Ad5. Southern blotting analysis with labeled oligodeoxynucleotides indicated that both Ad2 and Ad5 ITRs were present in sub54 viral DNA preparations, and successive plaque purifications of sub54 demonstrated that viruses with nonidentical terminal sequences were viable but were rapidly converted to viruses with identical ends. Cloning of the sub54 genome as a bacterial plasmid supported the observations made by analysis of sub54 virion DNA. A plasmid, pFG154, was isolated which contained the entire adenovirus genome with an Ad2 ITR at the left terminus covalently linked to an Ad5 ITR at the right terminus. Upon transfection of mammalian cells with pFG154, viral progeny were obtained which had all possible combinations of termini, thus confirming that molecules with nonidentical termini are viable. Pure populations of viruses with nonidentical termini could not be isolated, suggesting efficient repair of one end with the opposite terminus used as a template. A model for this process is proposed involving strand displacement replication and emphasizing the importance of panhandle formation (annealing of terminal sequences) as a replicative intermediate.  相似文献   

5.
Human adenovirus type 5 (Ad5) is a DNA virus which replicates as efficiently in human A549 cells treated with human interferon-alpha 2 (IFN) as in untreated cells. Vesicular stomatitis virus (VSV), on the other hand, is a negative-strand RNA virus which is very sensitive to the effects of IFN treatment in A549 cells. The IFN-mediated inhibition of VSV replication was not observed in cells coinfected with Ad5. Abrogation of IFN-mediated antiviral activity was maximal when Ad5 infection preceded VSV infection by at least 36 h, but did not require adenovirus DNA synthesis for manifestation. Coinfection experiments with VSV and deletion variants of adenovirus demonstrated that neither virus-associated RNA synthesis nor expression of adenovirus early regions E1B, E2A, E3, or E4 are required for abrogation of IFN-mediated inhibition of VSV replication. However, expression of early region E1A was essential, suggesting that E1A products can modulate, either directly or indirectly, IFN activity in adenovirus-infected cells.  相似文献   

6.
Following joint replication of monkey SA7 adenovirus (C8 strain) and human adenovirus type 2 in green monkey kidney tissue culture, a virus possessing the properties of a hybrid was obtained. It was designated Ad2C8. Ad2C8 preparations contained two types of viral particles: human adenovirus type 2, and hybrid particles. The hybrid virions multiplied in green monkey kidney cells in the presence of human adenovirus types 1, 2, and 3, but not 3 and 7, and acquired the capsid of the helper adenovirus. The hybrid can serve as a helper for human adenoviruses. It can apparently induce T antigen of the C8 virus but, in contrast to the latter, does not induce tumors in hamsters.  相似文献   

7.
The interferon (IFN)-inducing capacity of different isolates of vesicular stomatitis virus (VSV) of the Indiana (IN) and New Jersey (NJ) serotypes were measured to assess the extent of variability of this phenotype. Over 200 preparations of wild-type field isolates, laboratory strains, and plaque-derived subpopulations were examined. Marked heterogeneity was found in the ability of these viruses to induce IFN, covering a 10,000-fold range. A good fit to a normal distribution for the log of the IFN yields suggests a continuum of incremental changes in the viral genome may govern the IFN-inducing capacity of consensus populations derived from independently arising infections. A broad range in the magnitude of these changes, skewed towards inducers of high IFN yields, is consistent with a comparable series of ribonucleotide changes in the VSV genome, a sine qua non of a quasispecies population. Plaque- or vesicle-derived populations displayed standard deviations less than the mean IFN yields, though skewed to higher yielders, whereas populations from field and laboratory samples which differed widely in time and origin of isolation gave standard deviations greater than the means. The plaque isolation of IFN-inducing particles of VSV-IN, normally masked in populations by the predominance of non-IFN-inducing particles that suppress IFN induction, and the isolation of potent wild-type IFN-inducing VSV-IN from cows during an outbreak of vesicular stomatitis in a region that had yielded only virus expressing the non-IFN-inducing phenotype in prior and subsequent years, supports the view that genetic bottlenecks are operative in the natural transmission of this disease.  相似文献   

8.
Latent infection of KB cells with adeno-associated virus type 2.   总被引:10,自引:23,他引:10       下载免费PDF全文
Adeno-associated virus (AAV) is a prevalent human virus whose replication requires factors provided by a coinfecting helper virus. AAV can establish latent infections in vitro by integration of the AAV genome into cellular DNA. To study the process of integration as well as the rescue of AAV replication in latently infected cells after superinfection with a helper virus, we established a panel of independently derived latently infected cell clones. KB cells were infected with a high multiplicity of AAV in the absence of helper virus, cloned, and passaged to dilute out input AAV genomes. AAV DNA replication and protein synthesis were rescued from more than 10% of the KB cell clones after superinfection with adenovirus type 5 (Ad5) or herpes simplex virus types 1 or 2. In the absence of helper virus, there was no detectable expression of AAV-specific RNA or proteins in the latently infected cell clones. Ad5 superinfection also resulted in the production of infectious AAV in most cases. All mutant adenoviruses tested that were able to help AAV DNA replication in a coinfection were also able to rescue AAV from the latently infected cells, although one mutant, Ad5hr6, was less efficient at AAV rescue. Analysis of high-molecular-weight cellular DNA indicated that AAV sequences were integrated into the cell genome. The restriction enzyme digestion patterns of the cellular DNA were consistent with colinear integration of the AAV genome, with the viral termini present at the cell-virus junction. In addition, many of the cell lines appeared to contain head-to-tail concatemers of the AAV genome. The understanding of the integration of AAV DNA is increasingly important since AAV-based vectors have many advantages for gene transduction in vitro and in vivo.  相似文献   

9.
10.
Oncolytic replication-selective adenoviruses constitute a rapidly growing therapeutic platform for cancer. However, the role of the host immune response and the E3 immunoregulatory genes of the human adenovirus were unknown until now. We identified four mouse carcinoma lines of variable permissivity for adenoviral gene expression, cytopathic effects and/or burst size. To determine E3 gene effects in immunocompetent tumor-bearing hosts, we injected tumors with one of three adenoviruses: Ad5 (E3 wild type), dl309 (del. E3 10.4/14.5, 14.7 kDa) or dl704 (del. E3 gp19 kDa). Compared with Ad5 and dl704, dl309 was cleared much more rapidly and/or its activity was lower in all four models. Intratumoral injection with dl309 resulted in markedly greater macrophage infiltration and expression of both tumor necrosis factor and interferon-gamma. Adenovirus replication, CD8(+) lymphocyte infiltration and efficacy were similar upon intratumoral injection with either dl704 or Ad5. E3-dependent differences were not evident in athymic mice. These findings have important implications for the design of oncolytic adenoviruses and may explain the rapid clearance of E3-10.4/14.5,14.7-deleted adenoviruses in patients.  相似文献   

11.
Enteric adenovirus type 40 (Ad40) and Ad41 form the sixth subgenus of human adenoviruses. They are associated with infantile diarrhea but cannot be isolated in conventional cell cultures. The genome of the fastidious enteric Ad41 has been cloned, and the cleavage sites of the genome produced by restriction endonucleases BamHI, EcoRI, HpaI, NruI, PvuI, and SalI have been mapped. To develop useful hybridization methods for direct detection of adenoviruses, a restriction fragment library containing Ad41 DNA, with plasmid pBR322 as vector, has been constructed. Clones have been isolated which contain 8 of 10 possible BamHI fragments of Ad41, inserted into the BamHI cleavage site of the vector. Two of these clones are particularly useful for the detection of adenoviruses. One clone detects members of all human adenovirus subgenera, and the second clone is specific for enteric adenoviruses, in particular Ad41. A conspicuous absence of detectable homology was noted at 1.5 to 3.3 map units of the Ad41 genome in hybridizations against other serotypes of adenoviruses, including the closely related enteric Ad40. This sequence corresponds to the 5' portion of early region Ia.  相似文献   

12.
13.
The use of the PER.C6 adenovirus packaging cell line in combination with a designated vector plasmid system, whereby the cell line and vector with E1 deleted have no sequence overlap, eliminates the generation of replication-competent adenovirus during vector production. However, we have found cytopathic effect (CPE)-inducing particles in 2 out of more than 40 large-scale manufacturing lots produced in PER.C6 cells. The CPE inducer was detected at a frequency of 1 event in 7.5 x 10(12) vector particles. Despite amplification, it was not readily purified, indicating that the agent itself is replication deficient and requires the parental recombinant adenovirus serotype 5 (rAd5) vector for replication and packaging. Therefore, we designated the agent as a helper-dependent E1-positive region containing viral particle (HDEP). Here, we report the molecular structure of the HDEP genome, revealing an Ad comprised of E1 sequences derived from PER.C6 cells flanked by inverted terminal repeat, packaging signal, and transgene sequences. These sequences form a palindromic structure devoid of E2, E3, E4, and late genes. Since only 5 bp were shared between E1 sequences in the PER.C6 genome and viral vector sequences, the data strongly suggested that insertion of genomic DNA into an adenoviral genome had occurred essentially via nonhomologous recombination. HDEPs have been found in unrelated virus batches and appear to share a common structure that may explain their mechanism of generation. This finding allowed development of an HDEP assay to screen batches of rAd5 produced on the PER.C6 cell line and resulted in detection of seven HDEP agents from four different transgene-virus vector constructs in separate batches of Ad.  相似文献   

14.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

15.
It was for the first time that complementation between the human and simian adenoviruses in human cells as well as the ability of the human adenovirus Ad2 (HADv2) genome to transform completely into the simian adenovirus SA7(C8) (SADv15) capsid (transcapsidation) was demonstrated. A defective adeno-adeno hybrid (recombinant) between the above viruses is described; the recombinant has the SA7(C8) capsid and Ad2 genome with a 10% insertion of SA7(C8) in the central region. Defective hybrid virions are able to replicate both in human and simian cells by using the SA7(C8) virus as helper. The hybrid virions help the above virus to replicate in human cells: they form a mutually complementing virion pair.  相似文献   

16.
A mechanism for the control of protein synthesis by adenovirus VA RNAI   总被引:55,自引:0,他引:55  
  相似文献   

17.
A series of adenovirus type 5 precursor terminal protein (pTP) and DNA polymerase (Ad pol) genes with linker insertion mutations were separately introduced into the vaccinia virus genome under the control of a late vaccinia virus promoter. The recombinant viruses were used for overexpression of the mutant genes in HeLa cells. In total, 22 different mutant pTP and 10 different Ad pol vaccinia virus recombinants were constructed, including some that expressed carboxyl-terminus-truncated forms of both proteins and one that produced the mutant H5ts149 Ad pol. To investigate the structure-function relationships of both proteins, extracts from cells infected with the recombinant viruses were tested for in vitro complementation of the initiation and elongation steps in adenovirus DNA replication. The results were in accordance with those of earlier in vivo experiments with these insertion mutants and indicate that multiple regions of both proteins are essential for adenovirus DNA replication. The carboxyl termini of both pTP and Ad pol were shown to be essential for proper functioning of these proteins during initiation of adenovirus DNA replication. Three different DNA replication-negative pTP mutants were shown to have residual activity in the initiation assay, suggesting not only that pTP is required for initiation but also that it may play a role in DNA replication after the deoxycytidylation step.  相似文献   

18.
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3′ untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.  相似文献   

19.
Garnett CT  Erdman D  Xu W  Gooding LR 《Journal of virology》2002,76(21):10608-10616
The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 x 10(6) copies of the adenovirus genome/10(7) cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form.  相似文献   

20.
Oncolytic adenoviruses have emerged as a promising approach for the treatment of tumors resistant to other treatment modalities. However, preclinical safety studies are hampered by the lack of a permissive nonhuman host. Screening of a panel of primary cell cultures from seven different animal species revealed that porcine cells support productive replication of human adenovirus type 5 (Ad5) nearly as efficiently as human A549 cells, while release of infectious virus by cells from other animal species tested was diminished by several orders of magnitude. Restriction of productive Ad5 replication in rodent and rabbit cells seems to act primarily at a postentry step. Replication efficiency of adenoviral vectors harboring different E1 deletions or mutations in porcine cells was similar to that in A549 cells. Side-by-side comparison of the viral load kinetics in blood of swine and mice injected with Ad5 or a replication-deficient adenoviral vector failed to provide clear evidence for virus replication in mice. In contrast, evidence suggests that adenovirus replication occurs in swine, since adenoviral late gene expression produced a 13.5-fold increase in viral load in an individual swine from day 3 to day 7 and 100-fold increase in viral DNA levels in the Ad5-infected swine compared to the animal receiving a replication-deficient adenovirus. Lung histology of Ad5-infected swine revealed a severe interstitial pneumonia. Although the results in swine are based on a small number of animals and need to be confirmed, our data strongly suggest that infection of swine with human adenovirus or oncolytic adenoviral vectors is a more appropriate animal model to study adenoviral pathogenicity or pharmacodynamic and toxicity profiles of adenoviral vectors than infection of mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号