首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the proliferation and maturation of normal myeloid progenitor cells and can also stimulate the growth of acute myelogenous leukemia (AML) blasts. GM-CSF is not normally produced by resting cells but is expressed by a variety of activated cells including T lymphocytes, macrophages, and certain cytokine-stimulated fibroblasts and endothelial cells. Production of GM-CSF by cultured AML cells has been demonstrated, and GM-CSF expression by normal myeloid progenitors has been postulated to play a role in myelopoiesis. We have investigated the regulation of expression of GM-CSF in AML cell lines, and our results demonstrate the presence of a strong constitutive promoter element contained within 53 bp upstream of the cap site. We have also identified a negative regulatory element located immediately upstream of the positive regulatory element (within 69 bp of the cap site) that is active in AML cell lines but not T cells or K562 CML cells. Competition transfection and mobility shift studies demonstrate that this activity correlates with binding of a 45-kDa protein.  相似文献   

6.
Human cytomegalovirus encodes the G protein-coupled chemokine receptor homologue US28 that binds several CC chemokines and sequesters extracellular chemokines from the environment of infected cells. Mechanistically, it has been shown that US28 undergoes rapid constitutive receptor endocytosis and recycling. Monoclonal antibodies were raised that allowed the characterization of a ligand-independent phosphorylation and low surface expression of the US28 receptor in transiently transfected HEK293A cells. Phosphoamino acid analysis defined C-terminal serine and threonine residues as phospho-acceptor sites for constitutive receptor phosphorylation. Coexpression of G protein-coupled receptor kinase-2 and US28 enhanced ligand-independent receptor phosphorylation. C-terminal serine to alanine mutagenesis of US28 resulted in a decreased phosphorylation rate that correlated with enhanced surface expression. Maximal surface expression was detected when all C-terminal serines were substituted. Exchange of all C-terminal serines also significantly reduced receptor endocytosis. Thus, constitutive US28 phosphorylation regulates receptor endocytosis and receptor surface display and may thereby provide a pathogenic mechanism for a potential decoy function of the virally encoded receptor.  相似文献   

7.
Down-regulation of receptor tyrosine kinase activity plays an essential role in coordinating and controlling cellular growth/differentiation. Ca2+/calmodulin-dependent kinase II (CaM kinase II)-mediated phosphorylation of threonine 1172 in the cytoplasmic tail of HER2/c-erbB2 can modulate tyrosine kinase activity and consensus phosphorylation sites are also found at serines 1046/1047 in the structurally related epidermal growth factor receptor (EGFR). We show that serines 1046/1047 are sites for CaM kinase II phosphorylation, although there is a preference for serine 1047, which resides within the consensus -R-X-X-S-. In addition, we have identified major phosphorylation sites at serine 1142 and serine 1057, which lie within a novel -S-X-D- consensus. Mutation of serines 1046/1047 in full-length EGFR enhanced both fibroblast transformation and tyrosine autokinase activity that was significantly potentiated by additional mutation of serines 1057 and 1142. A single CaM kinase II site was also identified at serine 744 within sub-kinase domain III, and autokinase activity was significantly affected by mutation of this serine to an aspartic acid making this site appear constitutively phosphorylated. We have addressed the mechanism by which CaM kinase II phosphorylation of the EGFR might regulate receptor autokinase activity and show that this modification can hinder association of the cytoplasmic tail with the kinase domain to prevent an enzyme-substrate interaction. We postulate that the location and greater number of CaM kinase II phosphorylation sites in the EGFR compared with HER-2/c-erbB2, leading to differential regulation of autokinase activity, contributes to differences in the strength of downstream signaling events and may explain the higher relative transforming potential of HER-2/cerbB2.  相似文献   

8.
9.
Agonists stimulate cannabinoid 1 receptor (CB1R) internalization. Previous work suggests that the extreme carboxy-terminus of the receptor regulates this internalization – likely through the phosphorylation of serines and threonines clustered within this region. While truncation of the carboxy-terminus (V460Z CB1) and consequent removal of these putative phosphorylation sites prevents endocytosis in AtT20 cells, the residues necessary for CB1R internalization remain elusive. To determine the structural requirements for internalization, we evaluated endocytosis of carboxy-terminal mutant CB1Rs stably expressed in HEK293 cells. In contrast to AtT20 cells, V460Z CB1R expressed in HEK293 cells internalized to the same extent and with similar kinetics as the wild-type receptor. However, mutation of serine and/or threonine residues within the extreme carboxy-terminal attenuated internalization when these receptors were expressed in HEK293 cells. These results establish that the extreme carboxy-terminal phosphorylation sites are not required for internalization of truncated receptors, but are required for internalization of full-length receptors in HEK293 cells. Analysis of β-arrestin-2 recruitment to mutant CB1R suggests that putative carboxy-terminal phosphorylation sites mediate β-arrestin-2 translocation. This study indicates that the local cellular environment affects the structural determinants of CB1R internalization. Additionally, phosphorylation likely regulates the internalization of (full-length) CB1Rs.  相似文献   

10.
RUNX1 regulates formation of the definitive hematopoietic stem cell and its subsequent lineage maturation, and mutations of RUNX1 contribute to leukemic transformation. Phosphorylation of Ser-48, Ser-303, and Ser-424 by cyclin-dependent kinases (cdks) increases RUNX1 trans-activation activity without perturbing p300 interaction. We now find that endogenous RUNX1 interacts with endogenous HDAC1 or HDAC3. Mutation of the three RUNX1 serines to aspartic acid reduces co-immunoprecipitation with HDAC1 or HDAC3 when expressed in 293T cells; mutation of these three serines to alanine increases HDAC interaction, and mutation of each serine individually to aspartic acid also reduces these interactions. GST-RUNX1 isolated from bacterial extracts bound in vitro translated HDAC1 or HDAC3, and these interactions were weakened by mutation of Ser-48, Ser-303, and Ser-424 to aspartic acid. The ability of RUNX1 phosphorylation and not only serine to aspartic acid conversion to reduce HDAC1 binding was demonstrated using wild-type GST-RUNX1 phosphorylated in vitro using cdk1/cyclinB and by exposure of 293T cells transduced with RUNX1 and HDAC1 to roscovitine, a cdk inhibitor. Finally, RUNX1 or RUNX1(tripleD), in which Ser-48, Ser-303, and Ser-424 are mutated to aspartic acid, stimulated proliferation of transduced, lineage-negative murine marrow progenitors more potently than did RUNX1(tripleA), in which these serines are mutated to alanine, suggesting that stimulation of RUNX1 trans-activation by cdk-mediated reduction in HDAC interaction increases marrow progenitor cell proliferation.  相似文献   

11.
12.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

13.
14.
15.
16.
Cellular protein kinases, phosphatases, and other serotonin transporter (SERT) interacting proteins participate in several signaling mechanisms regulating SERT activity. The molecular mechanisms of protein kinase G (PKG)-mediated SERT regulation and the site of transporter phosphorylation were investigated. Treatment of rat midbrain synaptosomes with 8-bromo-cGMP increased SERT activity, and the increase was selectively blocked by PKG inhibitors. The V(max) value for serotonin (5-HT) transport increased following cGMP treatment. However, surface biotinylation studies showed no change in SERT surface abundance following PKG activation. (32)P metabolic labeling experiments showed increased SERT phosphorylation in the presence of cGMP that was abolished by selectively inhibiting PKG. Phosphoamino acid analysis revealed that cGMP-stimulated native SERT phosphorylation occurred only on threonine residues. When added to CHO-1 cells expressing SERT, 8-bromo-cGMP stimulated 5-HT transport and SERT phosphorylation. Mutation of SERT threonine 276 to alanine completely abolished cGMP-mediated stimulation of 5-HT transport and SERT phosphorylation. Although the T276A mutation had no significant effect on 5-HT transport or SERT protein expression, mutation to aspartate (T276D) increased the level of 5-HT uptake to that of cGMP-stimulated 5-HT uptake in wild-type SERT-expressing cells and was no longer sensitive to cGMP. These findings provide the first identification of a phosphorylation site in SERT and demonstrate that phosphorylation of Thr-276 is required for cGMP-mediated SERT regulation. They also constitute the first evidence that in the central nervous system PKG activation stimulates endogenous SERT activity by a trafficking-independent mechanism.  相似文献   

17.
18.
19.
Gab1 (Grb2-associated binder1) belongs to a family of multifunctional docking proteins that play a central role in the integration of receptor tyrosine kinase (RTK) signaling, i.e., mediating cellular growth response, transformation, and apoptosis. In addition to RTK-specific tyrosine phosphorylation, these docking proteins also can be phosphorylated on serine/threonine residues affecting signal transduction. Since serine and threonine phosphorylation are capable of modulating the initial signal one major task to elucidate signal transduction via Gab1 is to determine the exact localization of distinct phosphorylation sites. To address this question in this report we examined extracellular signal-regulated kinases 1/2 (ERK) specific serine/threonine phosphorylation of the entire Gab1 engaged in insulin signaling in more detail in vitro. To elucidate the ERK1/2-specific phosphorylation pattern of Gab1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Subsequently, phosphorylated serine/threonine residues were identified by sequencing the separated phosphopeptides using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that ERK1/2 phosphorylate Gab1 at six serine/threonine residues (T312, S381, S454, T476, S581, S597) in consensus motifs for MAP kinase phosphorylation. Serine residues S454, S581, S597, and threonine residue T476 represent nearly 80% of overall incorporated phosphate. These sites are located adjacent to src homology region-2 (SH2) binding motifs (YVPM-motif: Y447, Y472, Y619) specific for the phosphatidylinositol 3kinase (PI3K). The biological role of identified phosphorylation sites was proven by PI3K and Akt activity in intact cells. These data demonstrate that ERK1/2 modulate insulin action via Gab1 by targeting serine and threonine residues beside YXXM motifs. Accordingly, insulin signaling is blocked at the level of PI3K.  相似文献   

20.
Precise genomic modification using prime editing (PE) holds enormous potential for research and clinical applications. In this study, we generated all-in-one prime editing (PEA1) constructs that carry all the components required for PE, along with a selection marker. We tested these constructs (with selection) in HEK293T, K562, HeLa and mouse embryonic stem (ES) cells. We discovered that PE efficiency in HEK293T cells was much higher than previously observed, reaching up to 95% (mean 67%). The efficiency in K562 and HeLa cells, however, remained low. To improve PE efficiency in K562 and HeLa, we generated a nuclease prime editor and tested this system in these cell lines as well as mouse ES cells. PE-nuclease greatly increased prime editing initiation, however, installation of the intended edits was often accompanied by extra insertions derived from the repair template. Finally, we show that zygotic injection of the nuclease prime editor can generate correct modifications in mouse fetuses with up to 100% efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号