首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
TraR, the quorum-sensing activator of the Agrobacterium tumefaciens Ti plasmid conjugation system, induces gene expression in response to its quormone, N-(3-oxooctanoyl)-L-homoserine lactone. Ligand binding results in dimerization of TraR and is required for its activity. Analysis of N- and C-terminal deletion mutants of TraR localized the quormone-binding domain to a region between residues 39 and 140 and the primary dimerization domain to a region between residues 119 and 156. The dominant-negative properties of these mutants predicted a second dimerization domain at the C terminus of the protein. Analysis of fusions of N-terminal fragments of TraR to lambda cI' confirmed the dimerization activity of these two domains. Fifteen single amino acid substitution mutants of TraR defective in dimerization were isolated. According to the analysis of these mutants, Asp-70 and Gly-113 are essential for quormone binding, whereas Ala-38 and Ala-105 are important, but not essential. Additional residues located within the N-terminal half of TraR, including three located in alpha-helix 9, contribute to dimerization, but are not required for ligand binding. These results and the recently reported crystal structure of TraR are consistent with and complement each other and together define some of the structural and functional relationships of this quorum-sensing activator.  相似文献   

6.
T Abo  S Inamoto    E Ohtsubo 《Journal of bacteriology》1991,173(20):6347-6354
The product of the traM gene of plasmid R100 was purified as the TraM-collagen-beta-galactosidase fusion protein (TraM*) by using a beta-galactosidase-specific affinity column, and the TraM portion of TraM* (TraM') was separated by collagenolysis. Both the TraM* and TraM' proteins were found to bind specifically to a broad region preceding the traM gene. This region (designated sbm) was located within the nonconserved region in oriT among conjugative plasmids related to R100. The region seems to contain four core binding sites (designated sbmA, sbmB, sbmC, and sbmD), each consisting of a similar number of nucleotides and including a homologous 15-bp sequence. This result, together with the observation that the TraM* protein was located in the membrane fraction, indicates the possibility that the TraM protein has a function in anchoring the oriT region of R100 at the sbm sites to the membrane pore, through which the single-stranded DNA is transferred to the recipient. sbmC and sbmD, each of which contained a characteristic inverted repeat sequence, overlapped with the promoter region for the traM gene. This suggests that the expression of the traM gene may be regulated by its own product.  相似文献   

7.
8.
9.
TraR is a LuxR-type quorum-sensing protein encoded by the tumour-inducing plasmid of Agrobacterium tumefaciens . TraR requires the pheromone N-3-oxooctanoyl- l -homoserine lactone (OOHL) for biological activity, and is dimeric both in solution and when bound to DNA. Dimerization is mediated primarily by two α-helices, one in the N-terminal OOHL binding domain, and the other in the C-terminal DNA binding domain. Each of these helices forms a parallel coiled coil with the identical helix of the opposite subunit. We have previously shown that OOHL is essential for resistance to proteolysis, and here we asked whether dimerization is also required for protease resistance. We constructed a series of site-directed mutations at the dimer interface, and tested these mutants for activity in vivo . Alteration of residues A149, A150, A153, A222 and I229 completely abolished activity, while alteration of three other residues also caused significant defects. All mutants were tested for dimerization as well as for specific DNA binding. The cellular abundance of these proteins in A. tumefaciens was measured using Western immunoblots and OOHL sequestration, while the half-life was measured by pulse-chase radiolabelling. We found a correlation between defects in in vivo activity, in vitro dimerization, DNA binding and protein half-life. We conclude that dimerization of TraR enhances resistance to cellular proteases.  相似文献   

10.
11.
12.
Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is controlled by a hierarchical system in which opines, substrates produced by crown gall tumours, induce a quorum-sensing system. The cascade results from the control of expression of traR, the quorum-sensing activator, by a regulator responsive to the opine. In the two cases studied to date, the gene arrangements responsible for the cascade differ remarkably, suggesting that considerable diversity exists among the many Ti-like plasmids in the agrobacteria. In this study, we demonstrated that the novel Ti plasmid pTiChry5 is induced to transfer at high frequency by extracts from tumours initiated by strain Chry5. The purified inducer had the chemical and biological properties of agrocinopines C and D, a set of sugar phosphodiester opines known to induce transfer of another Ti plasmid, pTiBo542. The T-region of pTiChry5 contained a gene whose product, called Acs(Chry5), is virtually identical to the agrocinopine C+D synthase from the T-region of pTiBo542. The two genes are less closely related to acs of pTiC58, which is responsible for the production of agrocinopines A+B, a similar but not identical set of phosphodiester opines by tumours induced by strain C58. Agrocinopines A+B induce transfer of pTiC58 but did not induce transfer of pTi(Chry5). A single copy of traR was identified at the 11 o'clock region of pTi(Chry5), where it is part of a two-gene operon called arc(Chry5). Although altered by deletions, arc(Chry5) is related to the five-gene arc operon that controls the expression of traR on pTiC58. Expression of traR(Chry5) was induced by agrocinopines C+D and the opines isolated from Chry5 tumours but not by agrocinopines A+B. A mutation in traR(Chry5) abolished transfer, and transfer was restored by complementation in trans. We conclude that the agrocinopine opines and the corresponding opine-meditated conjugal regulatory regions of pTiChry5 and pTiC58 share a common origin, but that the opine signals for the two Ti plasmids have evolved divergently through changes in the opine synthase enzymes. The alterations in the opines, in turn, necessitated a co-evolutionary change in the opine recognition systems responsible for controlling expression of the traR genes on these two types of Ti plasmids.  相似文献   

13.
14.
15.
F plasmid TraM, an autoregulatory homotetramer, is essential for F plasmid bacterial conjugative transfer, one of the major mechanisms for horizontal gene dissemination. TraM cooperatively binds to three sites (sbmA, -B, and -C) near the origin of transfer in the F plasmid. To examine whether or not tetramerization of TraM is required for autoregulation and F conjugation, we used a two-plasmid system to screen for autoregulation-defective traM mutants generated by random PCR mutagenesis. A total of 72 missense mutations in TraM affecting autoregulation were selected, all of which also resulted in a loss of TraM function during F conjugation. Mutational analysis of TraM defined three regions important for F conjugation, including residues 3-10 (region I), 31-53 (region II), and 80-121 (region III); in addition, residues 3-47 were also important for the immunoreactivity of TraM. Biochemical analysis of mutant proteins indicated that region I defined a DNA binding domain that was not involved in tetramerization, whereas regions II and III were important for both tetramerization and efficient DNA binding. Mutations in region III affected the cooperativity of binding of TraM to sbmA, -B, and -C. Our results suggest that tetramerization is important for specific DNA binding, which, in turn, is essential for traM autoregulation and F conjugation. These findings support the hypothesis that TraM functions as a "signaling" factor that triggers DNA transport during F conjugation.  相似文献   

16.
In mice genetic ablation of expression of either melanin-concentrating hormone or the melanin-concentrating hormone-1 receptor results in alterations in energy metabolism and a lean phenotype. There is thus great interest in the function and regulation of this receptor. Using the yeast two-hybrid system we identified an interaction of the actin- and intermediate filament-binding protein periplakin with the intracellular C-terminal tail of the melanin-concentrating hormone-1 receptor. Direct association of these proteins was verified in pull-down and coimmunoprecipitation experiments. Truncations and internal deletions delineated the site of interaction to a group of 11 amino acids proximal to transmembrane helix VII, which was distinct from the binding site for the melanin-concentrating hormone-1 receptor-interacting zinc finger protein. Immunohistochemistry demonstrated coexpression of periplakin with melanin-concentrating hormone-1 receptor in specific cells of the piriform cortex, amygdala, and other structures of the adult mouse brain. Coexpression of the melanin-concentrating hormone-1 receptor with periplakin in human embryonic kidney 293 cells did not prevent agonist-mediated internalization of the receptor but did interfere with binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate ([(35)S]GTPgammaS) to the G protein Galpha(o1) and the elevation of [Ca(2+)](i). Coexpression of the receptor with the interacting zinc finger protein did not modulate receptor internalization or G protein activation. The interaction of periplakin with receptors was selective. Coexpression of periplakin with the IP prostanoid receptor did not result in coimmunoprecipitation nor interfere with agonist-mediated binding of [(35)S]GTPgammaS to the G protein Galpha(s). Periplakin is the first protein described to modify the capacity of the melanin-concentrating hormone-1 receptor to initiate signal transduction.  相似文献   

17.
18.
19.
ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom per molecule. Comparative analysis of the mutants by electrophoretic mobility shift assays was done with oligonucleotides for which the number of bases is approximately that occluded by one protein molecule. The analysis indicated that neither removal of the 60-amino-acid C-terminal region nor Cys254Ser and Cys455Ser mutations qualitatively affect the intrinsic DNA binding ability of ICP8. The C-terminal deletion mutants, however, exhibit a total loss of cooperativity on longer ssDNA stretches. This behavior is only slightly modulated by the two-cysteine substitution. Circular dichroism experiments suggest a role for this C-terminal tail in protein stabilization as well as in intermolecular interactions. The results show that the cooperative nature of the ssDNA binding of ICP8 is localized in the 60-residue C-terminal region. Since the anchoring of a C- or N-terminal arm of one protein onto the adjacent one on the DNA strand has been reported for other ssDNA binding proteins, this appears to be the general structural mechanism responsible for the cooperative ssDNA binding by this class of protein.  相似文献   

20.
Lu J  Frost LS 《Journal of bacteriology》2005,187(14):4767-4773
Conjugation is a major mechanism for disseminating genetic information in bacterial populations, but the signal that triggers it is poorly understood in gram-negative bacteria. F-plasmid-mediated conjugation requires TraM, a homotetramer, which binds cooperatively to three binding sites within the origin of transfer. Using in vitro assays, TraM has previously been shown to interact with the coupling protein TraD. Here we present evidence that F conjugation also requires TraM-TraD interactions in vivo. A three-plasmid system was used to select mutations in TraM that are defective for F conjugation but competent for tetramerization and cooperative DNA binding to the traM promoter region. One mutation, K99E, was particularly defective in conjugation and was further characterized by affinity chromatography and coimmunoprecipitation assays that suggested it was defective in interacting with TraD. A C-terminal deletion (S79*, where the asterisk represents a stop codon) and a missense mutation (F121S), which affects tetramerization, also reduced the affinity of TraM for TraD. We propose that the C-terminal region of TraM interacts with TraD, whereas its N-terminal domain is involved in DNA binding. This arrangement of functional domains could in part allow TraM to receive the mating signal generated by donor-recipient contact and transfer it to the relaxosome, thereby triggering DNA transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号