首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasoactive intestinal peptide (VIP) is a putative neurotransmitter in both the brain and peripheral tissues. To define possible target tissues of VIP we have used quantitative receptor autoradiography to localize and quantify the distribution of 125I-VIP receptor binding sites in the canine gastrointestinal tract. While the distribution of VIP binding sites was different for each segment examined, specific VIP binding sites were localized to the mucosa, the muscularis mucosa, the smooth muscle of submucosal arterioles, lymph nodules, and the circular and longitudinal smooth muscle of the muscularis externa. These results identify putative target tissues of VIP action in the canine gastrointestinal tract. In correlation with physiological data, VIP sites appear to be involved in the regulation of a variety of gastrointestinal functions including epithelial ion transport, gastric secretion, hemodynamic regulation, immune response, esophageal, gastric and intestinal motility.  相似文献   

2.
Previous work has established that the central nervous system can modulate the immune response. Direct routes through which this regulation may occur are the sympathetic and sensory innervation of lymphoid organs. We investigated the innervation of canine mesenteric lymph nodes using immunohistochemistry and the expression of binding sites for sensory neuropeptides using quantitative receptor autoradiography. The sympathetic innervation of lymph nodes was examined by immunohistochemical methods using an antiserum directed against tyrosine hydroxylase (TOH), the rate limiting enzyme in catecholamine synthesis. TOH-containing fibers were associated with 90% of the blood vessels (arteries, veins, arterioles and venules) in the hilus, medullary and internodular regions of lymph nodes and in trabeculae with no obvious relationship to blood vessels. The sensory innervation of lymph nodes was investigated using antisera directed against the putative sensory neurotransmitters calcitonin gene-related peptide (CGRP) and substance P (SP). CGRP- and SP-containing fibers were detected in the hilus, the medullary region, and the internodular region of lymph nodes usually in association with arterioles and venules. About 50% of the arterioles and venules exhibited a CGRP innervation and a smaller fraction (5-10%) were innervated by SP-containing fibers. Few if any TOH, CGRP, and SP nerve fibers were detected in the germinal centers of lymph nodes. Using quantitative receptor autoradiography we studied the distribution of receptor binding sites for the sensory neuropeptides CGRP, SP, substance K (SK), vasoactive intestinal peptide (VIP), somatostatin (SOM), and bombesin. Specific CGRP binding sites were expressed throughout lymph nodes by trabeculae, arterioles, venules and 25% of the germinal centers. SP receptor binding sites were localized to arterioles and venules in the T cell regions and 25-30% of the germinal centers. VIP binding sites were localized to the internodular and T cell regions, to medullary cords, and to 10-20% of germinal centers. SK, SOM, and bombesin binding sites were not detected in the lymph nodes, although receptor binding sites for these peptides were detected with high specific/nonspecific binding ratios in other canine peripheral tissues. Taken together with previous results these findings suggest that the sympathetic and sensory innervation of mesenteric lymph nodes appears to be involved with the regulation of their blood and lymph flow. The neuropeptide receptor binding sites in lymph node germinal centers may be expressed by lymphocytes upon activation by antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Glutamate and several neuropeptides are synthesized and released by subpopulations of primary afferent neurons. These sensory neurons play a role in regulating the inflammatory and immune responses in peripheral tissues. Using quantitative receptor autoradiography we have explored what changes occur in the location and concentration of receptor binding sites for sensory neurotransmitters in the colon in two human inflammatory diseases, ulcerative colitis and Crohn's disease. The sensory neurotransmitter receptors examined included bombesin, calcitonin gene related peptide-alpha, cholecystokinin, galanin, glutamate, somatostatin, neurokinin A (substance K), substance P, and vasoactive intestinal polypeptide. Of the nine receptor binding sites examined only substance P binding sites associated with arterioles, venules and lymph nodules were dramatically up-regulated in the inflamed tissue. These data suggest that substance P is involved in regulating the inflammatory and immune responses in human inflammatory diseases and indicate a specificity of efferent action for each sensory neurotransmitter in peripheral tissues.  相似文献   

4.
5.
The gastrointestinal tracts of four Chelonia mydas hatchlings were examined at the anatomical, histological and ultrastructural level. Our results show that the gastrointestinal tract(GI) is composed by esophagus, stomach, small intestine(SI) and large intestine(LI), and histologically of mucosa, submucosa, muscularis externa(ME) and serosa. The esophagus is marked by conical papillae lined by keratinized stratified squamous epithelium, whereas the remaining GI by simple columnar epithelium; esophageal diverticulum is absent. The stomach covered with mucous granule cells, contains cardia, fundic regions and pylorus, which are separately characterized by cardiac glands, fundic glands and pyloric glands, and have the thickest submucosa and ME of the GI. The ME of the esophagus mainly consist of one layer of circular smooth muscle whereas the rest of GI of two layers, inner circular muscle and outer longitudinal muscle. The SI is slightly longer than the LI and the GI is approximately 5.11 times of the carapace length. The SI is lined with longitudinal zigzag folds and characterized by absorptive cells with longer and denser microvilli, whereas the LI by transversal folds, goblet cells and lymphoid nodules. Only intestinal glands appear in duodenum. Endocrine cells are observed in all sections of the GI and accounted for the largest proportion in duodenum. The results demonstrate a perfect combination of the structure and function of the GI and reveal that the digestion and absorption primarily occurs in the foregut. C. mydas hatchling may prefer carnivorous diet.  相似文献   

6.
Tissue kallikreins are present in rat uterus during the estrous cycle in luminal and glandular epithelium, in early gestation in the implantation node, and in the last third of pregnancy surrounding the sinusoids in the decidua basalis. The pattern of kinin B2 receptor expression, through which the vasoactive effect of kallikreins is exerted, was studied by in vitro autoradiography and immunohistochemistry. The kinin B2 receptor was observed in the luminal and glandular epithelium, myometrium, endothelial cells of arteries, veins and venules, and smooth muscle cells of endometrial and myometrial arterioles. Immunoblotting of crude membranes revealed a band of 69 kDa that increased in late proestrus and estrus, concordantly with the pattern of immunostaining observed in the tissue. At Day 7 of gestation, the kinin B2 receptor was expressed (binding sites and receptor protein) in the epithelium of the implantation node and decidual cells; these latter cells showed a further increase during gestational Days 9 and 10. From Days 14 to 21, the subplacental decidua became strongly immunoreactive, and on Days 16 and 21 the placental labyrinthine endothelium was intensely stained. During this period, endothelium of arteries and veins, smooth muscular cells of small diameter arterioles, and myometrium also expressed B2 receptors. In unilaterally oil-stimulated pseudopregnancy, the decidual cells and the glandular epithelium show similar immunoreactivity to that during pregnancy. The temporospatial pattern of kinin B2 receptors, coinciding with that of kallikrein or with sites accessible to the generated kinins, further supports an autocrine-paracrine role for the kallikrein-kinin system in the vasoactive changes of implantation and placental blood flow regulation.  相似文献   

7.
8.
Insulin-like growth factor (IGF)-I and its binding protein IGF binding protein 5 (IGFBP-5) were highly expressed in inflamed and fibrotic intestine in experimental Crohn's disease. IGF-I induced proliferation and increased collagen synthesis by smooth muscle cells and fibroblasts/myofibroblasts in vitro. Here we studied IGF-I and IGFBP-5 in Crohn's disease tissue. Tissue was collected from patients undergoing intestinal resection for Crohn's disease. IGF-I and IGFBP-5 mRNAs were quantitated by RNase protection assay and Northern blot analysis, respectively. In situ hybridization was performed to localize mRNA expression, and Western immunoblot was performed to quantitate protein expression. IGF-I and IGFBP-5 mRNAs were increased in inflamed/fibrotic intestine compared with normal-appearing intestine. IGF-I mRNA was expressed in multiple cell types in the lamina propria and fibroblast-like cells of the submucosa and muscularis externa. IGFBP-5 mRNA was highly expressed in smooth muscle of the muscularis mucosae and muscularis externa as well as fibroblast-like cells throughout the bowel wall. Tissue IGFBP-5 protein correlated with collagen type I (r = 0.82). These findings are consistent with a mechanism whereby IGF-I acts on smooth muscle and fibroblasts/myofibroblasts to increase collagen synthesis and cellular proliferation; its effects may be modulated by locally expressed IGFBP-5.  相似文献   

9.
Summary Quantitative light-microscopic autoradiography was used on five human uteri at two different phases of the menstrual cycle to ascertain the cell types with binding sites for epidermal growth factor (EGF). The results revealed that stromal cells, glandular epithelium of endometrium, elongated and circular muscle cells of myometrium, smooth muscle and endothelial cells of arterioles in the basal endometrium and myometrium contained numerous silver grains following incubation with 125I-EGF. Coincubation with 100-fold excess unlabeled EGF resulted in a complete disappearance of silver grains from all cell types. Quantitative grain analysis indicated that stromal cells contained the highest number of EGF-binding sites (P<0.05) with no significant differences among the others (P>0.05). There was no cyclic variation of EGF-binding to any of the uterine cell types. The present data demonstrate that all the cell types of human uterus, including arterioles, contain EGF-binding sites. This suggests that all the cells in human uterus subserving different functions are targets of EGF action.  相似文献   

10.
本文采用免疫组织化学ABC法研究血管活性肠肽(VIP) 能神经和P物质(SP) 能神经在人十二指肠壁内的分布。结果显示: VIP能和SP能神经纤维和神经元均呈棕褐色; VIP能神经纤维遍布肠壁各层,SP能神经纤维主要分布于肌层和神经丛; VIP能和SP能神经元见于肌间和粘膜下神经, 尤以后者为多, 但形态特点不同; 在肌间神经丛, SP能神经元比VIP能神经元多。粘膜内可见VIP能和SP能神经元, 多单个分布在粘膜肌层内。结果表明: 1VIP能和SP能神经在人十二指肠壁内分布有差异。2粘膜内存在VIP能和SP能神经元  相似文献   

11.
In this study we localized receptor binding sites for 125I-human epidermal growth factor (hEGF) in the antrum of the adult canine stomach. High levels of specific 125I-hEGF binding sites were observed over the mucosa and muscularis mucosa, whereas specific binding sites were not detectable over the submucosa, external circular and longitudinal muscle or myenteric neurons. These results are in agreement with previous studies which indicated that EGF stimulates the proliferation of cultured epithelial cells and inhibits gastric acid secretion. This suggests that EGF may be a useful therapeutic agent in the healing of gastric ulcers.  相似文献   

12.
An obstacle to understanding motor pathologies of the gastrointestinal (GI) tract is that the physiology of some of the cellular components of the gut wall is not understood. Morphologists identified fibroblast-like cells in the tunica muscularis many years ago, but little is known about these interstitial cells because of inadequate techniques to identify these cells. Recent findings have shown that fibroblast-like cells express platelet-derived growth factor receptor α (PDGFRα) in mice and that antibodies for these receptors can be used to label the cells. We used immunohistochemical techniques to study the phenotype and intercellular relationships of fibroblast-like cells in the human colon. Fibroblast-like cells are labelled specifically with antibodies to PDGFRα and widely distributed through the tunica muscularis of human colon. These cells form discrete networks in the region of the myenteric plexus and within the circular and longitudinal muscle layers. Platelet-derived growth factor receptor α(+) cells are distinct from c-Kit(+) interstitial cells of Cajal and closely associated with varicose processes of neurons expressing substance P (excitatory motor neurons) or neuronal nitric oxide synthase (nNOS) (inhibitory motor neurons). Platelet-derived growth factor receptor α(+) cells express small conductance Ca(2+)-activated K(+) channels (SK3), which are likely to mediate purinergic neural regulation of colonic muscles. Our data suggest that PDGFRα(+) cells may have an important role in transducing inputs from enteric motor neurons. This study identifies reagents and techniques that will allow investigation of this class of interstitial cells and help develop an understanding of the role of PDGFRα(+) cells in the human GI tract in health and disease.  相似文献   

13.
Peptides of the trefoil factor family (TFF1, TFF2 and TFF3) are co-secreted with mucus in most organ systems and are believed to interact with mucins to produce high-viscosity, stable gel complexes. We have previously demonstrated that cells in the GI tract possess binding sites to TFF2 and that injected TFF2 ends up in the mucus layer. In the present study, tissue binding and metabolism of parenterally administered human TFF1 and TFF3 in rats were described and compared to the immunohistochemical localization of the TFF peptides. 125I-TFF1 monomer and 125I-TFF3 mono- and dimer were given intravenously to female Wistar rats. The tissue distribution was assessed by gamma counting of organ samples and by autoradiography of histological sections. The degradation of 125I-TFF3 was studied by means of trichloracetic acid (TCA) precipitation and the saturability of the binding by administration of excess unlabelled peptide. The TFF peptides were localized in histologic sections from the GI tract by immunohistochemistry. Injected TFF3 dimer (12%) was taken up by the GI tract. At autoradiography, grains were localized to the same cells that were immunoreactive to TFF2. The binding could be displaced by excess TFF3. Similar binding was observed for the TFF1 and TFF3 monomers apart from binding in the stomach, where the uptake was only 15% in comparison to the dimer. There was no specific binding outside the GI tract and no binding to TFF1 or TFF3 immunoreactive cells. In conclusion, the TFF2-binding cells in the gastrointestinal tract seem to have basolateral, receptor-like activity to all three TFF peptides. The mucous neck cells of the stomach predominantly take up TFFs with two trefoil domains, indicating a different receptor-like activity in the stomach compared to the rest of the GI tract.  相似文献   

14.
The interstitial cells of Cajal (ICCs) are important mediators of gastrointestinal (GI) motility because of their role as pacemakers in the GI tract. In addition to their function, ICCs are also structurally distinct cells most easily identified by their ultra-structural features and expression of the tyrosine kinase receptor c-KIT. ICCs have been described in mammals, rodents, birds, reptiles, and amphibians, but there are no reports at the ultra-structural level of ICCs within the GI tract of an organism from the teleost lineage. We describe the presence of cells in the muscularis of the zebrafish intestine; these cells have similar features to ICCs in other vertebrates. The ICC-like cells are associated with the muscularis, are more electron-dense than surrounding smooth muscle cells, possess long cytoplasmic processes and mitochondria, and are situated opposing enteric nervous structures. In addition, immunofluorescent and immunoelectron-microscopic studies with antibodies targeting the zebrafish ortholog of a putative ICC marker, c-KIT (kita), showed c-kit immunoreactivity in zebrafish ICCs. Taken together, these data represent the first ultra-structural characterization of cells in the muscularis of the zebrafish Danio rerio and suggest that ICC differentiation in vertebrate evolution dates back to the teleost lineage.  相似文献   

15.
This report describes the morphology of the smooth muscle cells, pericytes, and the perivascular autonomic nerve plexus of blood vessels in the rat mammary gland as visualized by scanning electron microscopy after removal of connective-tissue components. From the differences in cellular morphology, eight vascular segments were identified: 1) terminal arterioles (10-30 microns in outer diameter), with a compact layer of spindle-shaped and circularly oriented smooth muscle cells; 2) precapillary arterioles (6-12 microns), with a less compact layer of branched smooth muscle cells having circular processes; 3) arterial capillaries (4-7 microns), with " spidery " pericytes having mostly circularly oriented processes; 4) true capillaries (3-5 microns), with widely scattered pericytes having longitudinal and several circular processes; 5) venous capillaries (5-8 microns), with spidery pericytes having ramifying processes; 6) postcapillary venules (10-40 microns), with clustered spidery pericytes; 7) collecting venules (30-60 microns), with a discontinuous layer of circularly oriented and elongated stellate or branched spindle-shaped cells which may represent primitive smooth muscle cells; and 8) muscular venules (over 60 microns), with a discontinuous layer of ribbon-like smooth muscle cells having a series of small lateral projections. No focal precapillary sphincters were found. The nerve plexus appears to innervate terminal arterioles densely and precapillary arterioles less densely. Fine nerve fibers are only occasionally associated with arterial capillaries. Venous microvessels in the rat mammary gland seemingly lack innervation.  相似文献   

16.
17.
The intermediate filament nestin is expressed in neural stem cells, neuroectodermal tumors and various adult tissues. In the gastrointestinal (GI) tract, nestin has been reported in glial cells. Recently, nestin has been reported in interstitial cells of Cajal (ICC) and in gastrointestinal stromal tumors, thought to derive from ICC. Here we investigated nestin immunoreactivity (-ir) in the normal human GI tract, with emphasis on Kit-ir ICC. Two different antibodies specific for human nestin and multicolor high-resolution confocal microscopy were used on material from our human GI tissue collection. The staining pattern of both nestin antibodies was similar. In labeled cells, nestin-ir appeared filamentous. Most intramuscular ICC in antrum and all myenteric ICC (ICC-MP) in small intestine were nestin-ir, while nestin-ir was not detected in deep muscular plexus ICC. In the colon, some - but not all - ICC-MP and most ICC in the circular musculature were nestin-ir while nestin-ir was not detected in ICC in the longitudinal musculature and in the submuscular plexus. In addition, many Kit-negative cells were nestin-ir in all regions. Neurons and smooth muscle cells were consistently nestin negative, while most S100-ir glial cells were nestin-ir. In addition, nestin-ir was also present in some CD34-ir fibroblast-like cells, in endothelium and in other cell types in the mucosa and serosa. In conclusion, nestin-ir is abundantly present in the normal human GI tract. Among a number of cell types, several, but not all, subpopulations of Kit-ir ICC were nestin-ir. The functional significance of nestin in the GI tract remains obscure.  相似文献   

18.
The termination pattern of substance P (SP)-containing axons in human antral mucosa was examined using immunohistochemical techniques at the light and electron microscopic level. SP-immunoreactive (IR) axons were found to extend towards the pit region of the glands, where intraepithelial axons were observed. Electron microscopy showed immunostained axon profiles in close contact with the basement membrane of surface mucous cells. Membrane-to-membrane contacts between labeled axons and myofibroblast-like cells were identified, and SP-IR axons that were apposed to the epithelium were also in contact with subjacent myofibroblast-like cells. The anatomical relationship between SP-IR axons and the cells of the muscularis mucosae was investigated by light microscopy. Immunoreactivity for alpha-smooth muscle actin (alpha-sma) was used to visualize the smooth muscle cells, and the alpha-sma-IR cells were found to create a network that surrounded the gastric glands. Immunostained varicose axons ran alongside and in close apposition to the labeled muscle strands. Ultrastructural examination showed close contacts between SP-IR axon profiles and smooth muscle-like cells. In conclusion, SP-containing neurons may be important for sensory and secretomotor functions in the human antral mucosa.  相似文献   

19.
Lymph node nerve endings have been studied in 1- to 48-day-old mice. Serial sections of Epon-embedded lymph nodes were observed under the electron microscope to find the nerve endings. Most lymph node nerve fibers finally reach the smooth muscle cells of arterioles and muscular venules. Both kinds of vascular endings are similar, although endings are less numerous on venules. Nerve endings consist of one or more nerve processes surrounded by a usually incomplete Schwann cell sheath; frequently, axons show wide areas directly facing the muscle cells. The distance between such a naked axon and a myocyte ranges from 100 to 800 nm. Small granulated and clear vesicles are especially abundant in varicosities of nerve processes that are located very close to muscle cells. Nerve endings of lymph node vasculature probably correspond to vasomotor sympathetic adrenergic endings, regulating the degree of contraction of vessels which have a muscular layer. Other kinds of nerve endings also exist in lymph nodes: some axons appear free in the stroma and contact the surfaces of reticular cells; the latter also extend delicate cytoplasmic processes that surround the axons. The functional significance of nerve cell-reticular cell contacts is unknown.  相似文献   

20.
Interstitial cells of Cajal (ICC) are the pacemaker cells in gastrointestinal (GI) muscles. They also mediate or transduce inputs from enteric motor nerves to the smooth muscle syncytium. What is known about functional roles of ICC comes from developmental studies based on the discovery that ICC express c-kit. Functional development of ICC networks depends on signaling via the Kit receptor pathway. Immunohistochemical studies using Kit antibodies have expanded our knowledge about the ICC phenotype, the structure of ICC networks, the interactions of ICC with other cells within the tunica muscularis, and the loss of ICC in some motility disorders. Manipulating Kit signaling with reagents to block the receptor or downstream signaling pathways or by using mutant mice in which Kit or its ligand, stem cell factor, are defective has allowed novel studies of the development of these cells within the tunica muscularis and also allowed the study of specific functions of different classes of ICC in several regions of the GI tract. This article examines the role of ICC in GI motility, focusing on the functional development and maintenance of ICC networks in the GI tract and the phenotypic changes that can occur when the Kit signaling pathway is disrupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号