首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ras regulates signal transduction pathway function by dynamically interacting with various effectors. To understand the basis for Ras function, its conformational dynamics were measured in the absence and presence of effectors using single molecule fluorescence resonance energy transfer (FRET) between probes located on the Switch II region and GTP. The time trajectories of FRET efficiency from GTP-bound Ras showed that this conformation spontaneously varies among multiple states. Among them, a low FRET state was identified as an inactive state. The transition involving the inactive conformational state occurred in the time range of seconds. In contrast, fluctuation occurring most probably between multiple active high FRET conformational states lasted approximately 30 ms but converged to a specific conformational state upon binding to an effector. Thus, Ras conformation spontaneously fluctuates to readily interact with various effectors.  相似文献   

2.
Despite years of study, the structural or dynamical basis for the differential reactivity and oncogenicity of Ras isoforms and mutants remains unclear. In this study, we investigated the effects of amino acid variations on the structure and dynamics of wild type and oncogenic mutants G12D, G12V, and G13D of H‐ and K‐Ras proteins. Based on data from µs‐scale molecular dynamics simulations, we show that the overall structure of the proteins remains similar but there are important differences in dynamics and interaction networks. We identified differences in residue interaction patterns around the canonical switch and distal loop regions, and persistent sodium ion binding near the GTP particularly in the G13D mutants. Our results also suggest that different Ras variants have distinct local structural features and interactions with the GTP, variations that have the potential to affect GTP release and hydrolysis. Furthermore, we found that H‐Ras proteins and particularly the G12V and G13D variants are significantly more flexible than their K‐Ras counterparts. Finally, while most of the simulated proteins sampled the effector‐interacting state 2 conformational state, G12V and G13D H‐Ras adopted an open switch state 1 conformation that is defective in effector interaction. These differences have implications for Ras GTPase activity, effector or exchange factor binding, dimerization and membrane interaction. Proteins 2017; 85:1618–1632. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
The guanine nucleotide-binding protein Ras exists in solution in two different conformational states when complexed with different GTP analogs such as GppNHp or GppCH(2)p. State 1 has only a very low affinity to effectors and seems to be recognized by guanine nucleotide exchange factors, whereas state 2 represents the high affinity effector binding state. In this work we investigate Ras in complex with the physiological nucleoside triphosphate GTP. By polarization transfer (31)P NMR experiments and effector binding studies we show that Ras(wt)·Mg(2+)·GTP also exists in a dynamical equilibrium between the weakly populated conformational state 1 and the dominant state 2. At 278 K the equilibrium constant between state 1 and state 2 of C-terminal truncated wild-type Ras(1-166) K(12) is 11.3. K(12) of full-length Ras is >20, suggesting that the C terminus may also have a regulatory effect on the conformational equilibrium. The exchange rate (k(ex)) for Ras(wt)·Mg(2+)·GTP is 7 s(-1) and thus 18-fold lower compared with that found for the Ras·GppNHp complex. The intrinsic GTPase activity substantially increases after effector binding for the switch I mutants Ras(Y32F), (Y32R), (Y32W), (Y32C/C118S), (T35S), and the switch II mutant Ras(G60A) by stabilizing state 2, with the largest effect on Ras(Y32R) with a 13-fold increase compared with wild-type. In contrast, no acceleration was observed in Ras(T35A). Thus Ras in conformational state 2 has a higher affinity to effectors as well as a higher GTPase activity. These observations can be used to explain why many mutants have a low GTPase activity but are not oncogenic.  相似文献   

4.
Over the last 40 years, we have learnt a great deal about the Ras onco-proteins. These intracellular molecular switches are essential for the function of a variety of physiological processes, including signal transduction cascades responsible for cell growth and proliferation. Molecular simulations and free energy calculations have played an essential role in elucidating the conformational dynamics and energetics underlying the GTP hydrolysis reaction catalysed by Ras. Here we present an overview of the main lessons from molecular simulations on the GTPase reaction and conformational dynamics of this important anti-cancer drug target. In the first part, we summarise insights from quantum mechanical and combined quantum mechanical/molecular mechanical simulations as well as other free energy methods and highlight consensus viewpoints as well as remaining controversies. The second part provides a very brief overview of new insights emerging from large-scale molecular dynamics simulations. We conclude with a perspective regarding future studies of Ras where computational approaches will likely play an active role.  相似文献   

5.
Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species.  相似文献   

6.
The induced fit model has traditionally been invoked to describe the activating conformational change of the monomeric G-proteins, such as Ras and Rho. With this scheme, the presence or absence of the γ-phosphate of GTP leads to an instantaneous switch in conformation. Here we describe atomistic molecular simulations that demonstrate that both Ras and Rho superfamily members harbor an intrinsic susceptibility to sample multiple conformational states in the absence of nucleotide ligand. By comparing the distribution of conformers in the presence and absence of nucleotide, we show that conformational selection is the dominant mechanism by which Ras and Rho undergo nucleotide-dependent conformational changes. Furthermore, the pattern of correlated motions revealed by these simulations predicts a preserved allosteric coupling of the nucleotide-binding site with the membrane interacting C-terminus in both Rho and Ras.  相似文献   

7.
The small GTPase Rheb displays unique biological and biochemical properties different from other small GTPases and functions as an important mediator between the tumor suppressor proteins TSC1 and TSC2 and the mammalian target of rapamycin to stimulate cell growth. We report here the three-dimensional structures of human Rheb in complexes with GDP, GTP, and GppNHp (5'-(beta,gamma-imide)triphosphate), which reveal novel structural features of Rheb and provide a molecular basis for its distinct properties. During GTP/GDP cycling, switch I of Rheb undergoes conformational change while switch II maintains a stable, unusually extended conformation, which is substantially different from the alpha-helical conformation seen in other small GTPases. The unique switch II conformation results in a displacement of Gln64 (equivalent to the catalytic Gln61 of Ras), making it incapable of participating in GTP hydrolysis and thus accounting for the low intrinsic GTPase activity of Rheb. This rearrangement also creates space to accommodate the side chain of Arg15, avoiding its steric hindrance with the catalytic residue and explaining its noninvolvement in GTP hydrolysis. Unlike Ras, the phosphate moiety of GTP in Rheb is shielded by the conserved Tyr35 of switch I, leading to the closure of the GTP-binding site, which appears to prohibit the insertion of a potential arginine finger from its GTPase-activating protein. Taking the genetic, biochemical, biological, and structural data together, we propose that Rheb forms a new group of the Ras/Rap subfamily and uses a novel GTP hydrolysis mechanism that utilizes Asn1643 of the tuberous sclerosis complex 2 GTPase-activating protein domain instead of Gln64 of Rheb as the catalytic residue.  相似文献   

8.
Consonni R  Arosio I  Recca T  Longhi R  Colombo G  Vanoni M 《Biochemistry》2003,42(42):12154-12162
Ras proteins are small G proteins playing a major role in eukaryotic signal transduction. Guanine nucleotide exchange factors (GEF) stimulate GDP/GTP exchange, resulting in the formation of the active Ras-GTP complex. In mammalian cells, two major Ras-specific GEF exist: Sos-like and Cdc25-like. To date, structural data are available only for Cdc25(Mm). We designed and synthesized Cdc25(Mm)-derived peptides spanning residues corresponding to the hSos1 HI helical hairpin that has been implicated in the GEF catalytic mechanism. NMR experiments on a chemically synthesized Cdc25(Mm)(1178-1222) peptide proved that helix I readily reaches a conformation very similar to the corresponding helix in hSos1, while residues corresponding to helix H in hSos1 show higher conformational flexibility. Molecular dynamics studies with the appropriate solvent model showed that different conformational spaces are available for the peptide. Since helix H is making several contacts with Ras and a Cdc25(Mm)(1178-1222) peptide is able to bind nucleotide-free Ras in a BIAcore assay, the peptide must be able to obtain the proper Ras-interacting conformation, at least transiently. These results indicate that rational design and improvement of the Ras-interacting peptides should take into account conformational and flexibility features to obtain molecules with the appropriate biochemical properties.  相似文献   

9.
The guanine nucleotide-binding protein Ras occurs in solution in two different states, state 1 and state 2, when the GTP analogue GppNHp is bound to the active center as detected by (31)P NMR spectroscopy. Here we show that Ras(wt).Mg(2+).GppCH(2)p also exists in two conformational states in dynamic equilibrium. The activation enthalpy DeltaH(++)(12) and the activation entropy DeltaS(++)(12) for the transition from state 1 to state 2 are 70 kJ mol(-1) and 102 J mol(-1) K(-1), within the limits of error identical to those determined for the Ras(wt).Mg(2+).GppNHp complex. The same is true for the equilibrium constants K(12) = [2]/[1] of 2.0 and the corresponding DeltaG(12) of -1.7 kJ mol(-1) at 278 K. This excludes a suggested specific effect of the NH group of GppNHp on the equilibrium. The assignment of the phosphorus resonance lines of the bound analogues has been done by two-dimensional (31)P-(31)P NOESY experiments which lead to a correction of the already reported assignments of bound GppNHp. Mutation of Thr35 in Ras.Mg(2+).GppCH(2)p to serine leads to a shift of the conformational equilibrium toward state 1. Interaction of the Ras binding domain (RBD) of Raf kinase or RalGDS with Ras(wt) or Ras(T35S) shifts the equilibrium completely to state 2. The (31)P NMR experiments suggest that, besides the type of the side chain of residue 35, a main contribution to the conformational equilibrium in Ras complexes with GTP and GTP analogues is the effective acidity of the gamma-phosphate group of the bound nucleotide. A reaction scheme for the Ras-effector interaction is presented which includes the existence of two conformations of the effector loop and a weak binding state.  相似文献   

10.
Guanine nucleotide binding proteins (GNB-proteins) play an essential role in cellular signaling, acting as molecular switches, cycling between the inactive, GDP-bound form and the active, GTP-bound form. It has been shown that conformational equilibria also exist within the active form of GNB-proteins between conformational states with different functional properties. Here we present (31)P NMR data on ADP ribosylation factor 1 (Arf1), a GNB-protein involved in Golgi traffic, promoting the coating of secretory vesicles. To investigate conformational equilibria in active Arf1, the wild type and switch I mutants complexed with GTP and a variety of commonly used GTP analogues, namely, GppCH(2)p, GppNHp, and GTPγS, were analyzed. To gain deeper insight into the conformational state of active Arf1, we titrated with Cu(2+)-cyclen and GdmCl and formed the complex with the Sec7 domain of nucleotide exchange factor ARNO and an effector GAT domain. In contrast to the related proteins Ras, Ral, Cdc42, and Ran, from (31)P NMR spectroscopic view, Arf1 exists predominantly in a single conformation independent of the GTP analogue used. This state seems to correspond to the so-called state 2(T) conformation, according to Ras nomenclature, which is interacting with the effector domain. The exchange of the highly conserved threonine in position 48 with alanine led to a shift of the equilibrium toward a conformational state with typical properties obtained for state 1(T) in Ras, such as interaction with guanine nucleotide exchange factors, a lower affinity for nucleoside triphosphates, and greater sensitivity to chaotropic agents. In active Arf1(wt), the effector interacting conformation is strongly favored. These intrinsic conformational equilibria of active GNB-proteins could be a fine-tuning mechanism of regulation and thereby an interesting target for the modulation of protein activity.  相似文献   

11.
The guanine nucleotide-binding protein Ras occurs in solution in two different conformational states, state 1 and state 2 with an equilibrium constant K(12) of 2.0, when the GTP analogue guanosine-5'-(beta,gamma-imido)triphosphate or guanosine-5'-(beta,gamma-methyleno)triphosphate is bound to the active centre. State 2 is assumed to represent a strong binding state for effectors with a conformation similar to that found for Ras complexed to effectors. In the other state (state 1), the switch regions of Ras are most probably dynamically disordered. Ras variants that exist predominantly in state 1 show a drastically reduced affinity to effectors. In contrast, Ras(wt) bound to the GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) leads to (31)P NMR spectra that indicate the prevalence of only one conformational state with K(12) > 10. Titration with the Ras-binding domain of Raf-kinase (Raf-RBD) shows that this state corresponds to effector binding state 2. In the GTPgammaS complex of the effector loop mutants Ras(T35S) and Ras(T35A) two conformational states different to state 2 are detected, which interconvert over a millisecond time scale. Binding studies with Raf-RBD suggest that both mutants exist mainly in low-affinity states 1a and 1b. From line-shape analysis of the spectra measured at various temperatures an activation energy DeltaH(|) (1a1b) of 61 kJ.mol(-1) and an activation entropy DeltaS(|) (1a1b) of 65 J.K(-1).mol(-1) are derived. Isothermal titration calorimetry on Ras bound to the different GTP-analogues shows that the effective affinity K(A) for the Raf-RBD to Ras(T35S) is reduced by a factor of about 20 compared to the wild-type with the strongest reduction observed for the GTPgammaS complex.  相似文献   

12.
The activity of adenylate cyclase in the yeast Saccharomyces cerevisiae is controlled by two G-protein systems, the Ras proteins and the Galpha protein Gpa2. Glucose activation of cAMP synthesis is thought to be mediated by Gpa2 and its G-protein-coupled receptor Gpr1. Using a sensitive GTP-loading assay for Ras2 we demonstrate that glucose addition also triggers a fast increase in the GTP loading state of Ras2 concomitant with the glucose-induced increase in cAMP. This increase is severely delayed in a strain lacking Cdc25, the guanine nucleotide exchange factor for Ras proteins. Deletion of the Ras-GAPs IRA2 (alone or with IRA1) or the presence of RAS2Val19 allele causes constitutively high Ras GTP loading that no longer increases upon glucose addition. The glucose-induced increase in Ras2 GTP-loading is not dependent on Gpr1 or Gpa2. Deletion of these proteins causes higher GTP loading indicating that the two G-protein systems might directly or indirectly interact. Because deletion of GPR1 or GPA2 reduces the glucose-induced cAMP increase the observed enhancement of Ras2 GTP loading is not sufficient for full stimulation of cAMP synthesis. Glucose phosphorylation by glucokinase or the hexokinases is required for glucose-induced Ras2 GTP loading. These results indicate that glucose phosphorylation might sustain activation of cAMP synthesis by enhancing Ras2 GTP loading likely through inhibition of the Ira proteins. Strains with reduced feedback inhibition on cAMP synthesis also display elevated basal and induced Ras2 GTP loading consistent with the Ras2 protein acting as a target of the feedback-inhibition mechanism.  相似文献   

13.
Cell division control protein 42 homolog (Cdc42) protein, a Ras superfamily GTPase, regulates cellular activities, including cancer progression. Using all-atom molecular dynamics (MD) simulations and essential dynamic analysis, we investigated the structure and dynamics of the catalytic domains of GDP-bound (inactive) and GTP-bound (active) Cdc42 in solution. We discovered substantial differences in the dynamics of the inactive and active forms, particularly in the “insert region” (residues 122–135), which plays a role in Cdc42 activation and binding to effectors. The insert region has larger conformational flexibility in the GDP-bound Cdc42 than in the GTP-bound Cdc42. The G2 loop and switch I at the effector lobe of the catalytic domain exhibit large conformational changes in both the GDP- and the GTP-bound systems, but in the GTP-bound Cdc42, the switch I interactions with GTP are retained. Oncogenic mutations were identified in the Ras superfamily. In Cdc42, the G12V and Q61L mutations decrease the GTPase activity. We simulated these mutations in both GDP- and GTP-bound Cdc42. Although the overall structural organization is quite similar between the wild type and the mutants, there are small differences in the conformational dynamics, especially in the two switch regions. Taken together, the G12V and Q61L mutations may play a role similar to their K-Ras counterparts in nucleotide binding and activation. The conformational differences, which are mainly in the insert region and, to a lesser extent, in the switch regions flanking the nucleotide binding site, can shed light on binding and activation. We propose that the differences are due to a network of hydrogen bonds that gets disrupted when Cdc42 is bound to GDP, a disruption that does not exist in other Rho GTPases. The differences in the dynamics between the two Cdc42 states suggest that the inactive conformation has reduced ability to bind to effectors.  相似文献   

14.
The flexibility of the conserved 57DTAGQ61 motif is essential for Ras proper cycling in response to growth factors. Here, we increase the flexibility of the 57DTAGQ61 motif by mutating Gln61 to Gly. The crystal structure of the RasQ61G mutant reveals a new conformation of switch 2 that bears remarkable structural homology to an intermediate for GTP hydrolysis revealed by targeted molecular dynamics simulations. The mutation increased retention of GTP and inhibited Ras binding to the catalytic site, but not to the distal site of Sos. Most importantly, the thermodynamics of RafRBD binding to Ras are altered even though the structure of switch 1 is not affected by the mutation. Our results suggest that interplay and transmission of structural information between the switch regions are important factors for Ras function. They propose that initiation of GTP hydrolysis sets off the separation of the Ras/effector complex even before the GDP conformation is reached.  相似文献   

15.
Cycling between a GTP bound "on" state and a GDP bound "off" state, guanine nucleotide-binding (GNB) proteins act as molecular switches. The switching process and the interaction with effectors, GTPase-activating proteins, and guanosine nucleotide-exchange factors is accompanied by pronounced conformational changes of the switch regions of the GNB proteins. The aim of the present contribution is to correlate conformational changes observed by liquid-state NMR with solid-state (31)P NMR data and with the results of X-ray crystallography. Crystalline wild-type Ras complexed with GTP analogs such as GppCH(2)p and GppNHp could be prepared. At low temperatures, two different signals were found for the gamma-phosphate group of GppNHp bound to wild-type Ras. This behavior indicates the existence of two different conformations of the molecule in the crystalline state as it is found in solution but not by X-ray crystallography. In contrast to the GppNHp complex, the two separate gamma-phosphate signals could not be observed for GppCH(2)p bound to wild-type Ras. However, an increasing linewidth at low temperature indicates the presence of an exchange process. The results obtained for the wild-type protein are compared with the behavior of GppNHp complexes of the effector loop mutants Ras(T35S) and Ras(T35A). These mutants prefer a conformation similar to the GDP bound "off" state.  相似文献   

16.
The classical model for the activation of the nucleotide exchange factor Son of sevenless (SOS) involves its recruitment to the membrane, where it engages Ras. The recent discovery that Ras*GTP is an allosteric activator of SOS indicated that the regulation of SOS is more complex than originally envisaged. We now present crystallographic and biochemical analyses of a construct of SOS that contains the Dbl homology-pleckstrin homology (DH-PH) and catalytic domains and show that the DH-PH unit blocks the allosteric binding site for Ras and suppresses the activity of SOS. SOS is dependent on Ras binding to the allosteric site for both a lower level of activity, which is a result of Ras*GDP binding, and maximal activity, which requires Ras*GTP. The action of the DH-PH unit gates a reciprocal interaction between Ras and SOS, in which Ras converts SOS from low to high activity forms as Ras*GDP is converted to Ras*GTP by SOS.  相似文献   

17.
The small GTPase Ras is an important signaling molecule acting as a molecular switch in eukaryotic cells. Recent findings of global conformational exchange and a putative allosteric binding site in the G domain of Ras opened an avenue to understanding novel aspects of Ras function. To facilitate detailed NMR studies of Ras in physiological solution conditions, we performed backbone resonance assignments of Ras bound to slowly hydrolysable GTP mimic, guanosine 5′-[ß, γ-imido]triphosphate at pH 7.2. Out of 163 non-proline residues of the G domain, signals from backbone amide proton, nitrogen and carbon spins of 127 residues were confidently assigned with the remaining unassigned residues mostly located at the exchange-broadened effectors interface.  相似文献   

18.
GTP-bound forms of Ras family small GTPases exhibit dynamic equilibrium between two interconverting conformations, "inactive" state 1 and "active" state 2. A great variation exists in their state distribution; H-Ras mainly adopts state 2, whereas M-Ras predominantly adopts state 1. Our previous studies based on comparison of crystal structures representing state 1 and state 2 revealed the importance of the hydrogen-bonding interactions of two flexible effector-interacting regions, switch I and switch II, with the γ-phosphate of GTP in establishing state 2 conformation. However, failure to obtain both state structures from a single protein hampered further analysis of state transition mechanisms. Here, we succeed in solving two crystal structures corresponding to state 1 and state 2 from a single Ras polypeptide, M-RasD41E, carrying an H-Ras-type substitution in residue 41, immediately preceding switch I, in complex with guanosine 5'-(β,γ-imido)triphosphate. Comparison among the two structures and other state 1 and state 2 structures of H-Ras/M-Ras reveal two new structural features playing critical roles in state dynamics; interaction of residues 31/41 (H-Ras/M-Ras) with residues 29/39 and 30/40, which induces a conformational change of switch I favoring its interaction with the γ-phosphate, and the hydrogen-bonding interaction of switch II with its neighboring α-helix, α3-helix, which induces a conformational change of switch II favoring its interaction with the γ-phosphate. The importance of the latter interaction is proved by mutational analyses of the residues involved in hydrogen bonding. These results define the two novel functional regions playing critical roles during state transition.  相似文献   

19.
Fridman M  Walker F  Catimel B  Domagala T  Nice E  Burgess A 《Biochemistry》2000,39(50):15603-15611
Mutational analysis of the cRaf-1 Ras binding domain (RBD) identified several point mutants with elevated Ras binding. Detailed examination of the binding kinetics of one mutant (A85K) suggests that it associates with a greater range of isomeric conformers of v-H-Ras than wt-RBD. At limiting v-H-Ras concentrations, saturation binding to A85K-RBD is higher than to wt-RBD. Notably, in assay systems where the RBD concentration is limiting, no difference exists between wt-RBD and A85K-RBD saturation levels in the presence of a sufficiently large molar excess of Ras. The inability of wt-RBD to saturate all bindable Ras/GTP (defined by its binding to A85K-RBD) suggests that Ras/GTP exists as several isoforms and that only a minority of these isoforms are capable of associating with wt-RBD. These findings provide the first experimental evidence in support of functionally distinct Ras/GTP isoforms. We also describe a novel analysis of such isoforms.  相似文献   

20.
Mishra R  Gara SK  Mishra S  Prakash B 《Proteins》2005,59(2):332-338
Ras superfamily GTP-binding proteins regulate important signaling events in the cell. Ras, which often serves as a prototype, efficiently hydrolyzes GTP in conjunction with its regulator GAP. A conserved glutamine plays a vital role in GTP hydrolysis in most GTP-binding proteins. Mutating this glutamine in Ras has oncogenic effects, since it disrupts GTP hydrolysis. The analysis presented here is of GTP-binding proteins that are a paradox to oncogenic Ras, since they have the catalytic glutamine (Glncat) substituted by a hydrophobic amino acid, yet can hydrolyze GTP efficiently. We term these proteins HAS-GTPases. Analysis of the amino acid sequences of HAS-GTPases reveals prominent presence of insertions around the GTP-binding pocket. Homology modeling studies suggest an interesting means to achieve catalysis despite the drastic hydrophobic substitution replacing the key Glncat of Ras-like GTPases. The substituted hydrophobic residue adopts a "retracted conformation," where it is positioned away from the GTP, as its role in catalysis would be unproductive. This conformation is further stabilized by interactions with hydrophobic residues in its vicinity. These interacting residues are strongly conserved and hydrophobic in all HAS-GTPases, and correspond to residues Asp92 and Tyr96 of Ras. An experimental support for the "retracted conformation" of Switch II arises from the crystal structures of Ylqf and hGBP1. This conformation allows us to hypothesize that, unlike in classical GTPases, catalytic residues could be supplied by regions other than the Switch II (i.e., either the insertions or a neighboring domain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号