首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNAseq and microarray methods are frequently used to measure gene expression level. While similar in purpose, there are fundamental differences between the two technologies. Here, we present the largest comparative study between microarray and RNAseq methods to date using The Cancer Genome Atlas (TCGA) data. We found high correlations between expression data obtained from the Affymetrix one-channel microarray and RNAseq (Spearman correlations coefficients of ∼0.8). We also observed that the low abundance genes had poorer correlations between microarray and RNAseq data than high abundance genes. As expected, due to measurement and normalization differences, Agilent two-channel microarray and RNAseq data were poorly correlated (Spearman correlations coefficients of only ∼0.2). By examining the differentially expressed genes between tumor and normal samples we observed reasonable concordance in directionality between Agilent two-channel microarray and RNAseq data, although a small group of genes were found to have expression changes reported in opposite directions using these two technologies. Overall, RNAseq produces comparable results to microarray technologies in term of expression profiling. The RNAseq normalization methods RPKM and RSEM produce similar results on the gene level and reasonably concordant results on the exon level. Longer exons tended to have better concordance between the two normalization methods than shorter exons.  相似文献   

2.
Two-color DNA microarrays are commonly used for the analysis of global gene expression. They provide information on relative abundance of thousands of mRNAs. However, the generated data need to be normalized to minimize systematic variations so that biologically significant differences can be more easily identified. A large number of normalization procedures have been proposed and many softwares for microarray data analysis are available. Here, we have applied two normalization methods (median and loess) from two packages of microarray data analysis softwares. They were examined using a sample data set. We found that the number of genes identified as differentially expressed varied significantly depending on the method applied. The obtained results, i.e. lists of differentially expressed genes, were consistent only when we used median normalization methods. Loess normalization implemented in the two software packages provided less coherent and for some probes even contradictory results. In general, our results provide an additional piece of evidence that the normalization method can profoundly influence final results of DNA microarray-based analysis. The impact of the normalization method depends greatly on the algorithm employed. Consequently, the normalization procedure must be carefully considered and optimized for each individual data set.  相似文献   

3.
New normalization methods for cDNA microarray data   总被引:7,自引:0,他引:7  
MOTIVATION: The focus of this paper is on two new normalization methods for cDNA microarrays. After the image analysis has been performed on a microarray and before differentially expressed genes can be detected, some form of normalization must be applied to the microarrays. Normalization removes biases towards one or other of the fluorescent dyes used to label each mRNA sample allowing for proper evaluation of differential gene expression. RESULTS: The two normalization methods that we present here build on previously described non-linear normalization techniques. We extend these techniques by firstly introducing a normalization method that deals with smooth spatial trends in intensity across microarrays, an important issue that must be dealt with. Secondly we deal with normalization of a new type of cDNA microarray experiment that is coming into prevalence, the small scale specialty or 'boutique' array, where large proportions of the genes on the microarrays are expected to be highly differentially expressed. AVAILABILITY: The normalization methods described in this paper are available via http://www.pi.csiro.au/gena/ in a software suite called tRMA: tools for R Microarray Analysis upon request of the authors. Images and data used in this paper are also available via the same link.  相似文献   

4.
PURPOSE OF REVIEW: To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. RECENT FINDINGS: The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. SUMMARY: There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.  相似文献   

5.
MOTIVATION: Finding differentially expressed genes is a fundamental objective of a microarray experiment. Numerous methods have been proposed to perform this task. Existing methods are based on point estimates of gene expression level obtained from each microarray experiment. This approach discards potentially useful information about measurement error that can be obtained from an appropriate probe-level analysis. Probabilistic probe-level models can be used to measure gene expression and also provide a level of uncertainty in this measurement. This probe-level measurement error provides useful information which can help in the identification of differentially expressed genes. RESULTS: We propose a Bayesian method to include probe-level measurement error into the detection of differentially expressed genes from replicated experiments. A variational approximation is used for efficient parameter estimation. We compare this approximation with MAP and MCMC parameter estimation in terms of computational efficiency and accuracy. The method is used to calculate the probability of positive log-ratio (PPLR) of expression levels between conditions. Using the measurements from a recently developed Affymetrix probe-level model, multi-mgMOS, we test PPLR on a spike-in dataset and a mouse time-course dataset. Results show that the inclusion of probe-level measurement error improves accuracy in detecting differential gene expression. AVAILABILITY: The MAP approximation and variational inference described in this paper have been implemented in an R package pplr. The MCMC method is implemented in Matlab. Both software are available from http://umber.sbs.man.ac.uk/resources/puma.  相似文献   

6.
SpotWhatR is a user-friendly microarray data analysis tool that runs under a widely and freely available R statistical language (http://www.r-project.org) for Windows and Linux operational systems. The aim of SpotWhatR is to help the researcher to analyze microarray data by providing basic tools for data visualization, normalization, determination of differentially expressed genes, summarization by Gene Ontology terms, and clustering analysis. SpotWhatR allows researchers who are not familiar with computational programming to choose the most suitable analysis for their microarray dataset. Along with well-known procedures used in microarray data analysis, we have introduced a stand-alone implementation of the HTself method, especially designed to find differentially expressed genes in low-replication contexts. This approach is more compatible with our local reality than the usual statistical methods. We provide several examples derived from the Blastocladiella emersonii and Xylella fastidiosa Microarray Projects. SpotWhatR is freely available at http://blasto.iq.usp.br/~tkoide/SpotWhatR, in English and Portuguese versions. In addition, the user can choose between "single experiment" and "batch processing" versions.  相似文献   

7.
Prostate cancer is one of the most common male malignant neoplasms; however, its causes are not completely understood. A few recent studies have used gene expression profiling of prostate cancer to identify differentially expressed genes and possible relevant pathways. However, few studies have examined the genetic mechanics of prostate cancer at the pathway level to search for such pathways. We used gene set enrichment analysis and a meta-analysis of six independent studies after standardized microarray preprocessing, which increased concordance between these gene datasets. Based on gene set enrichment analysis, there were 12 down- and 25 up-regulated mixing pathways in more than two tissue datasets, while there were two down- and two up-regulated mixing pathways in three cell datasets. Based on the meta-analysis, there were 46 and nine common pathways in the tissue and cell datasets, respectively. Three up- and 10 down-regulated crossing pathways were detected with combined gene set enrichment analysis and meta-analysis. We found that genes with small changes are difficult to detect by classic univariate statistics; they can more easily be identified by pathway analysis. After standardized microarray preprocessing, we applied gene set enrichment analysis and a meta-analysis to increase the concordance in identifying biological mechanisms involved in prostate cancer. The gene pathways that we identified could provide insight concerning the development of prostate cancer.  相似文献   

8.
Extracting biomedical information from large metabolomic datasets by multivariate data analysis is of considerable complexity. Common challenges include among others screening for differentially produced metabolites, estimation of fold changes, and sample classification. Prior to these analysis steps, it is important to minimize contributions from unwanted biases and experimental variance. This is the goal of data preprocessing. In this work, different data normalization methods were compared systematically employing two different datasets generated by means of nuclear magnetic resonance (NMR) spectroscopy. To this end, two different types of normalization methods were used, one aiming to remove unwanted sample-to-sample variation while the other adjusts the variance of the different metabolites by variable scaling and variance stabilization methods. The impact of all methods tested on sample classification was evaluated on urinary NMR fingerprints obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was investigated on a dataset following a Latin-square design, where varied amounts of 8 different metabolites were spiked into a human urine matrix while keeping the total spike-in amount constant. In addition, specific tests were conducted to systematically investigate the influence of the different preprocessing methods on the structure of the analyzed data. In conclusion, preprocessing methods originally developed for DNA microarray analysis, in particular, Quantile and Cubic-Spline Normalization, performed best in reducing bias, accurately detecting fold changes, and classifying samples.  相似文献   

9.
Array-based gene expression studies frequently serve to identify genes that are expressed differently under two or more conditions. The actual analysis of the data, however, may be hampered by a number of technical and statistical problems. Possible remedies on the level of computational analysis lie in appropriate preprocessing steps, proper normalization of the data and application of statistical testing procedures in the derivation of differentially expressed genes. This review summarizes methods that are available for these purposes and provides a brief overview of the available software tools.  相似文献   

10.
Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED). Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.  相似文献   

11.
MOTIVATION: It is important to consider finding differentially expressed genes in a dataset of microarray experiments for pattern generation. RESULTS: We developed two methods which are mainly based on the q-values approach; the first is a direct extension of the q-values approach, while the second uses two approaches: q-values and maximum-likelihood. We present two algorithms for the second method, one for error minimization and the other for confidence bounding. Also, we show how the method called Patterns from Gene Expression (PaGE) (Grant et al., 2000) can benefit from q-values. Finally, we conducted some experiments to demonstrate the effectiveness of the proposed methods; experimental results on a selected dataset (BRCA1 vs BRCA2 tumor types) are provided. CONTACT: alhajj@cpsc.ucalgary.ca.  相似文献   

12.
Although many statistical methods have been proposed for identifying differentially expressed genes, the optimal approach has still not been resolved. Therefore, it is necessary to develop more efficient methods of finding differentially expressed genes while accounting for noise and false discovery rate (FDR). We propose a method based on multi-resolution wavelet transformation analysis combined with SAM for identifying differentially expressed genes by adjusting the Δ and computing the FDR. This method was applied to a microarray expression dataset from adenoma patients and normal subjects. The number of differentially expressed genes gradually reduced with an increasing Δ value, and the FDR was reduced after wavelet transformation. At a given Δ value, the FDR was also reduced before and after wavelet transformation. In conclusion, a greater number and quality of differentially expressed genes were detected using the method when compared to non-transformed data, and the FDRs were notably more controlled and reduced.  相似文献   

13.

Extracting biomedical information from large metabolomic datasets by multivariate data analysis is of considerable complexity. Common challenges include among others screening for differentially produced metabolites, estimation of fold changes, and sample classification. Prior to these analysis steps, it is important to minimize contributions from unwanted biases and experimental variance. This is the goal of data preprocessing. In this work, different data normalization methods were compared systematically employing two different datasets generated by means of nuclear magnetic resonance (NMR) spectroscopy. To this end, two different types of normalization methods were used, one aiming to remove unwanted sample-to-sample variation while the other adjusts the variance of the different metabolites by variable scaling and variance stabilization methods. The impact of all methods tested on sample classification was evaluated on urinary NMR fingerprints obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was investigated on a dataset following a Latin-square design, where varied amounts of 8 different metabolites were spiked into a human urine matrix while keeping the total spike-in amount constant. In addition, specific tests were conducted to systematically investigate the influence of the different preprocessing methods on the structure of the analyzed data. In conclusion, preprocessing methods originally developed for DNA microarray analysis, in particular, Quantile and Cubic-Spline Normalization, performed best in reducing bias, accurately detecting fold changes, and classifying samples.

  相似文献   

14.
Commonly accepted intensity-dependent normalization in spotted microarray studies takes account of measurement errors in the differential expression ratio but ignores measurement errors in the total intensity, although the definitions imply the same measurement error components are involved in both statistics. Furthermore, identification of differentially expressed genes is usually considered separately following normalization, which is statistically problematic. By incorporating the measurement errors in both total intensities and differential expression ratios, we propose a measurement-error model for intensity-dependent normalization and identification of differentially expressed genes. This model is also flexible enough to incorporate intra-array and inter-array effects. A Bayesian framework is proposed for the analysis of the proposed measurement-error model to avoid the potential risk of using the common two-step procedure. We also propose a Bayesian identification of differentially expressed genes to control the false discovery rate instead of the ad hoc thresholding of the posterior odds ratio. The simulation study and an application to real microarray data demonstrate promising results.  相似文献   

15.
There are many options in handling microarray data that can affect study conclusions, sometimes drastically. Working with a two-color platform, this study uses ten spike-in microarray experiments to evaluate the relative effectiveness of some of these options for the experimental goal of detecting differential expression. We consider two data transformations, background subtraction and intensity normalization, as well as six different statistics for detecting differentially expressed genes. Findings support the use of an intensity-based normalization procedure and also indicate that local background subtraction can be detrimental for effectively detecting differential expression. We also verify that robust statistics outperform t-statistics in identifying differentially expressed genes when there are few replicates. Finally, we find that choice of image analysis software can also substantially influence experimental conclusions.  相似文献   

16.
MOTIVATION: A common objective of microarray experiments is the detection of differential gene expression between samples obtained under different conditions. The task of identifying differentially expressed genes consists of two aspects: ranking and selection. Numerous statistics have been proposed to rank genes in order of evidence for differential expression. However, no one statistic is universally optimal and there is seldom any basis or guidance that can direct toward a particular statistic of choice. RESULTS: Our new approach, which addresses both ranking and selection of differentially expressed genes, integrates differing statistics via a distance synthesis scheme. Using a set of (Affymetrix) spike-in datasets, in which differentially expressed genes are known, we demonstrate that our method compares favorably with the best individual statistics, while achieving robustness properties lacked by the individual statistics. We further evaluate performance on one other microarray study.  相似文献   

17.
Relative quantification by normalization against a stably expressed reference gene is a widely used data analysis method in microarray and quantitative real-time polymerase chain reaction (qRT-PCR) platforms; however, recent evidence suggests that many commonly utilized reference genes are unstable in certain experimental systems and situations. The primary aim of this study, therefore, was to screen and identify stably expressed reference genes in a well-established rat model of vocal fold mucosal injury. We selected and evaluated the expression stability of nine candidate reference genes. Ablim1, Sptbn1, and Wrnip1 were identified as stably expressed in a model-specific microarray dataset and were further validated as suitable reference genes in an independent qRT-PCR experiment using 2−ΔCT and pairwise comparison-based (geNorm) analyses. Parallel analysis of six commonly used reference genes identified Sdha as the only stably expressed candidate in this group. Sdha, Sptbn1, and the geometric mean of Sdha and Sptbn1 each provided accurate normalization of target gene Tgfb1; Gapdh, the least stable candidate gene in our dataset, provided inaccurate normalization and an invalid experimental result. The stable reference genes identified here are suitable for accurate normalization of target gene expression in vocal fold mucosal injury experiments.  相似文献   

18.
MOTIVATION: Currently most of the methods for identifying differentially expressed genes fall into the category of so called single-gene-analysis, performing hypothesis testing on a gene-by-gene basis. In a single-gene-analysis approach, estimating the variability of each gene is required to determine whether a gene is differentially expressed or not. Poor accuracy of variability estimation makes it difficult to identify genes with small fold-changes unless a very large number of replicate experiments are performed. RESULTS: We propose a method that can avoid the difficult task of estimating variability for each gene, while reliably identifying a group of differentially expressed genes with low false discovery rates, even when the fold-changes are very small. In this article, a new characterization of differentially expressed genes is established based on a theorem about the distribution of ranks of genes sorted by (log) ratios within each array. This characterization of differentially expressed genes based on rank is an example of all-gene-analysis instead of single gene analysis. We apply the method to a cDNA microarray dataset and many low fold-changed genes (as low as 1.3 fold-changes) are reliably identified without carrying out hypothesis testing on a gene-by-gene basis. The false discovery rate is estimated in two different ways reflecting the variability from all the genes without the complications related to multiple hypothesis testing. We also provide some comparisons between our approach and single-gene-analysis based methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

19.
20.
cDNA microarray data are subject to many sources of variation that have to be removed before statistical tests can be applied for identifying genes that are expressed differentially. Background correction, log-ratio transformation, and normalization, referred as the log-ratio approach, have been widely used for this purpose. However, there are some problems associated with this procedure. In this study, we proposed an alternative approach that obviates the log-ratio transformation step and goes directly to normalization after background correction. The method can estimate the “noise” effect by utilizing the information more effectively. Simulation studies were carried out to compare the feasibility and efficiency of this approach for detecting the specifically and differentially expressed genes under various conditions with the log-ratio approach. The results showed that our approach worked well and was more robust and powerful than the log-ratio approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号