首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scaffolds porosity has an important role in in vitro and in vivo differentiation process of stem cells with given the amount of space available to the cells to proliferate and differentiate. In the present study, chitosan with three porosities including 10%, 15%, and 20% that created by gelatin were used for investigation of the proliferation and osteogenic differentiation potential of adipose‐derived stem cells (ADSCs). In order to be more like the scaffold to natural bone tissue, freeze‐drying method was used in the scaffold preparation. Scaffold morphology, cell attachment, and toxicity were evaluated using scanning electron microscopy and MTT assay. Then, osteogenic differentiation potential of ADSCs cultured on chitosan with different porosities was evaluated by common osteogenic markers such as Alizarin red staining, ALP activity, calcium content, and osteogenic‐related genes expression via real‐time RT‐PCR. Although all scaffolds supported the proliferation and differentiation of ADSCs, but 10% scaffold demonstrated higher amount of osteogenic markers in comparison with the other porosities and control groups. Taking together, it can be concluded that osteogenic differentiation well done in the scaffolds with lower porosity because density of the cells will increase by forcing resulted from the scaffold, so osteogenic differentiation of the stem cells have an inverse association with scaffold porosity. J. Cell. Biochem. 119: 625–633, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) on four commercially available scaffold biomaterials.METHODS: hDPSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. hDPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureOss (Allograft), Cerabone (Xenograft), PLLA (Synthetic), and OSTEON II Collagen (Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy (SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase (ALP) activity assay, respectively.RESULTS: All scaffold biomaterials except SureOss (Allograft) supported hDPSC adhesion, proliferation and differentiation. hDPSCs seeded on PLLA (Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hDPSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA (Synthetic) and OSTEON II Collagen (Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone (Xenograft) and OSTEON II Collagen (Composite) scaffolds, the hDPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape.CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Hence, it may be useful in combination with hDPSCs for cell-based reconstructive therapy.  相似文献   

3.
Tsai SW  Liou HM  Lin CJ  Kuo KL  Hung YS  Weng RC  Hsu FY 《PloS one》2012,7(2):e31200
Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC) matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG) matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63 osteoblast-like cells on EC and EG is matrix stiffness and via ROCK-FAK-ERK1/2.  相似文献   

4.
5.
AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.  相似文献   

6.
Mesenchymal stem cells (MSCs) have been repeatedly shown to be able to repair bone defects. The aim of this study was to characterize the osteogenic differentiation of miniature pig MSCs and markers of this differentiation in vitro. Flow-cytometrically characterized MSCs were seeded on cultivation plastic (collagen I and vitronectin coated/uncoated) or plasma clot (PC)/plasma-alginate clot (PAC) scaffolds and differentiated in osteogenic medium. During three weeks of differentiation, the formation of nodules and deposition of calcium were visualized by Alizarin Red Staining. In addition, the production of alkaline phosphatase (ALP) activity was quantitatively detected by fluorescence. The expression of osteopontin, osteonectin and osteocalcin were assayed by immunohistochemistry and Western Blot analysis. We revealed a decrease of osteopontin expression in 2D and 3D environment during differentiation. The weak initial osteonectin signal, culminating on 7(th) or 14(th) day of differentiation, depends on collagen I and vitronectin coating in 2D system. The highest activity of ALP was detected on 21(th) day of osteogenic differentiation. The PC scaffolds provided better conditions for osteogenic differentiation of MSCs than PAC scaffolds in vitro. We also observed expected effects of collagen I and vitronectin on the acceleration of osteogenic differentiation of miniature pig MSC. Our results indicate similar ability of miniature pig MSCs osteogenic differentiation in 2D and 3D environment, but the expression of osteogenic markers in scaffolds and ECM coated monolayers started earlier than in the monolayers without ECM.  相似文献   

7.
In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy.  相似文献   

8.
9.
10.
用原位合成纳米羟基磷灰石的方法制备多孔纳米羟基磷灰石/壳聚糖复合支架;在支架上接种MC3T3-E1细胞,瑞氏染色检测细胞形态,MTT法检测其增殖情况;在诱导培养基中培养30d后,碱性磷酸酶染色比较其分化水平;定量检测细胞的碱性磷酸酶活性;RT-PCR检测成骨相关基因的表达情况。实验结果表明:MC3T3-E1细胞在纳米级羟基磷灰石/壳聚糖复合支架上粘附铺展良好,其增殖率显著高于培养于纯壳聚糖支架上的细胞。碱性磷酸酶染色表明复合支架上的细胞有较高水平的碱性磷酸酶表达。进一步定量检测细胞的碱性磷酸酶活性,结果说明在复合支架上细胞比纯壳聚糖支架上培养的细胞碱性磷酸酶活性提高了约8倍。此外,骨分化相关特征基因骨桥蛋白OPN在复合支架上培养的细胞中的表达水平也明显高于纯壳聚糖上培养的细胞。分化成熟标志基因骨钙素OC在复合支架上培养的细胞中有表达,但是纯壳聚糖支架上培养的细胞中却未检测到。支架中纳米羟基磷灰石的加入不仅提高了前成骨细胞在复合支架上的增殖,而且还促进了它的分化。纳米羟基磷灰石/壳聚糖复合支架表现出良好的生物相容性和生物活性,是极具前景的骨组织工程支架材料。  相似文献   

11.
用原位合成纳米羟基磷灰石的方法制备多孔纳米羟基磷灰石/壳聚糖复合支架;在支架上接种MC 3T3-E1细胞,瑞氏染色检测细胞形态,MTT法检测其增殖情况;在诱导培养基中培养30d后,碱性磷酸酶染色比较其分化水平;定量检测细胞的碱性磷酸酶活性;RT-PCR检测成骨相关基因的表达情况。实验结果表明:MC 3T3-E1细胞在纳米级羟基磷灰石/壳聚糖复合支架上粘附铺展良好,其增殖率显著高于培养于纯壳聚糖支架上的细胞。碱性磷酸酶染色表明复合支架上的细胞有较高水平的碱性磷酸酶表达。进一步定量检测细胞的碱性磷酸酶活性,结果说明在复合支架上细胞比纯壳聚糖支架上培养的细胞碱性磷酸酶活性提高了约8倍。此外,骨分化相关特征基因骨桥蛋白OPN在复合支架上培养的细胞中的表达水平也明显高于纯壳聚糖上培养的细胞。分化成熟标志基因骨钙素OC在复合支架上培养的细胞中有表达,但是纯壳聚糖支架上培养的细胞中却未检测到。支架中纳米羟基磷灰石的加入不仅提高了前成骨细胞在复合支架上的增殖,而且还促进了它的分化。纳米羟基磷灰石/壳聚糖复合支架表现出良好的生物相容性和生物活性,是极具前景的骨组织工程支架材料。  相似文献   

12.
13.
This study examined the osteogenic differentiation of cultured human periosteal-derived cells grown in a three dimensional collagen-based scaffold. Periosteal explants with the appropriate dimensions were harvested from the mandible during surgical extraction of lower impacted third molar. Periosteal-derived cells were introduced into cell culture. After passage 3, the cells were divided into two groups and cultured for 28 days. In one group, the cells were cultured in two-dimensional culture dishes with osteogenic inductive medium containing dexamethasone, ascorbic acid, and β-glycerophosphate. In the other group, the cells were seeded onto a three-dimensional collagen scaffold and cultured under the same conditions. We examined the bioactivity of alkaline phosphatase (ALP), the RT-PCR analysis for ALP and osteocalcin, and measurements of the calcium content in the periosteal-derived cells of two groups. Periosteal-derived cells were successfully differentiated into osteoblasts in the collagen-based scaffold. The ALP activity in the periosteal-derived cells was appreciably higher in the three-dimensional collagen scaffolds than in the two-dimensional culture dishes. The levels of ALP and osteocalcin mRNA in the periosteal-derived cells was also higher in the three-dimensional collagen scaffolds than in the two-dimensional culture dishes. The calcium level in the periosteal-derived cells seeded onto three-dimensional collagen scaffolds showed a 5.92-fold increase on day 7, 3.28-fold increase on day 14, 4.15-fold increase on day 21, and 2.91-fold increase on day 28, respectively, compared with that observed in two-dimensional culture dishes. These results suggest that periosteal-derived cells have good osteogenic capacity in a three-dimensional collagen scaffold, which provides a suitable environment for the osteoblastic differentiation of these cells.  相似文献   

14.
Poly-(lactide-co-glycolide) (PLGA) is an FDA-approved biodegradable polymer which has been widely used as a scaffold for tissue engineering applications. Collagen has been used as a coating material for bone contact materials, but relatively little interest has focused on biomimetic coating of PLGA with extracellular matrix components such as collagen and the glycosaminoglycan chondroitin sulfate (CS). In this study, PLGA films were coated with collagen type I or collagen I with CS (collagen I/CS) to investigate the effect of CS on the behaviour of the osteoblastic cell line MG 63. Collagen I/CS coatings promoted a significant increase in cell number after 3 days (in comparison to PLGA) and after 7 days (in comparison to PLGA and collagen-coated PLGA). No influence of collagen I or collagen I/CS coatings on the spreading area after 1 day of culture was observed. However, the cells on collagen I/CS formed numerous filopodia and displayed well developed vinculin-containing focal adhesion plaques. Moreover, these cells contained a significantly higher concentration of osteocalcin, measured per mg of protein, than the cells on the pure collagen coating. Thus, it can be concluded that collagen I/CS coatings promote MG 63 cell proliferation, improve cell adhesion and enhance osteogenic cell differentiation.  相似文献   

15.
Applications of bioreactors in combination with scaffolding materials are promising in tissue-engineering fields. To rapidly produce bone mesenchymal stem cells (MSCs) suitable for osteogenic differentiation (OSD), we developed a novel technique for β-TCP (β-tricalcium phosphate) scaffolds preparation and employed these scaffolds to build a new type of mini three dimensional (3D) perfusion bioreactor. Compared to the 2D static culture, MSCs acquired much higher amplification rate and alkaline phosphatase (ALP) activity over a 24-day culture period. Interestingly, the Specific ALP activity was independent of the growth rate under adequate osteogenic inducement, suggesting there may be an OSD bottleneck at a single-cell level. Furthermore, cells on scaffolds exhibited gradually reduced total migration rate (MR) and relatively constant local MR, both ideal for bone regeneration. Excellent adhesion of MSCs to the smooth scaffolds surface, especially the layer structures, was seen on scanning electron microscopy images, demonstrating fine compatibility between scaffold and cells. Our results indicate this simplified, integrated and potentially modularizable 3D bioreactor could enable the osteocytes producing from MSCs for expected applications.  相似文献   

16.
Objectives: Enamel matrix proteins (EMPs) have been demonstrated to promote periodontal regeneration. However, effects of EMPs on human alveolar osteoblasts (hAOBs), up to now, have still been unclear. The purpose of this study was to investigate influence of EMPs on proliferation, differentiation and attachment of hAOBs in vitro. Materials and methods: EMPs were extracted using the acetic acid method, hAOBs were obtained and cultured in vitro. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of osteogenic markers and cell attachment were measured in the absence and in the presence of EMPs (50, 100 and 200 μg/ml). Results: EMPs increased proliferation of hAOBs; however, they inhibited ALP activity and mRNA expression of osteogenic markers (collagen I, ALP, runt‐related protein 2, osteocalcin, bone sialoprotein and osteopontin). Meanwhile, EMPs hindered hAOBs’ attachment. These effects occurred in EMPs concentration‐dependent manner. Conclusions: These results indicate that EMPs may inhibit osteoblastic differentiation and attachment to prevent ankylosis and allow other cell types to regenerate periodontal tissues.  相似文献   

17.
The novel hybrid scaffolds fabricated from silk fibroin, gelatin, low deacetylation degree chitosan and hydroxyapatite were investigated for their in vitro biocompatibility and osteoconductivity to mouse pre-osteoblast cell line (MC3T3-E1) and rat bone marrow-derived stem cells (MSC). We found that gelatin-conjugated silk fibroin films and scaffolds dominantly promoted cell adhesion and proliferation. Film and scaffold prepared from gelatin-conjugated silk fibroin with hydroxyapatite grown crystals effectively enhanced osteogenic differentiation of both cell types, as evaluated by alkaline phosphatase activity and calcium content. However the blend of hydroxyapatite/low deacetylation degree chitosan hybrid materials did not support cell growth. Furthermore, the blended hydroxyapatite in the bulk scaffold was found to be less effective for osteogenic differentiation than the scaffold with hydroxyapatite grown crystals. The comparative study between MC3T3-E1 and MSC showed that both cell types had similar trend of proliferation and osteogenic differentiation on the same material. Also, higher proliferative rate of MC3T3-E1 than MSC was observed.  相似文献   

18.
The biomimetic approach mimicking in vivo micro environment is the key for developing functional tissue engineered constructs. In this study, we used a tripolymer combination consisting of a natural polymer, chitosan and two extracellular matrix components; collagen type 1 and hyaluronic acid to coat tissue culture plate to evaluate their effect on osteogenic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). The polymers were blended at different mixing ratios and the tissue culture plates were coated either by polyblend method or by surface modification method. hMSCs isolated from adult bone marrow were directed to osteoblast differentiation on the coated plates. Our results showed that the tripolymer coating of the tissue culture plate enhanced mineralization as evidenced by calcium quantification exhibiting significantly higher amount of calcium compared to the untreated or individual polymer coated plates. We found that the tripolymer coated plates having a 1:1 mixing ratio of chitosan and collagen type 1, surface modified with hyaluronic acid is an ideal combination to achieve the synergistic effect of these polymers on in vitro osteogenic differentiation of hMSCs. These results thus, establish a novel biomimetic approach of surface modification to enhance osteoblast differentiation and mineralization. Our findings hold great promise in implementing a biomimetic surface coating to improve osteoconductivity of implants and scaffolds for various orthopaedic and bone tissue engineering applications.  相似文献   

19.
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell-extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号