首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
The purpose of this study was to identify and characterize T cell and B cell recognition sites within the pre-S(1) region of HBsAg/p43, and to then analyze functional T cell-B cell interactions at the level of in vivo antibody production. The results indicate: three peptide sequences within the pre-S(1) region of HBsAg were identified which can induce and elicit HBsAg/p43-specific T cell proliferation; a 10-amino acid peptide, p12-21, defines one pre-S(1)-specific T cell recognition site, and residues 18 and 19 are critical to the recognition process; the p12-21 sequence can function as a T cell carrier for a synthetic B cell epitope within the pre-S(2) region; the p94-117 sequence contains at least two T cell recognition sites; five distinct, pre-S(1)-specific antibody binding sites were identified; synthetic pre-S(1) region T cell determinants can prime in vivo antibody production to multiple B cell epitopes within the pre-S(2) and S regions, as well as within the pre-S(1) region; the specificity of the primed T cell population can influence the specificity of the B cell response; and T cell recognition of pre-S(1) region peptides is regulated by H-2-linked genes.  相似文献   

2.
Previous studies of murine T cell recognition of the pre-S(2) region of the hepatitis B surface Ag (HBsAg) identified high (H-2b,d,q), intermediate (H-2s,k), and low to nonresponder (H-2f) haplotypes. However, these studies utilized the y subtype of HBsAg. The purpose of this study was to examine the influence of viral subtype on T cell recognition of the pre-S(2) region and to identify specific T cell recognition sites in a panel of H-2 congenic strains. Immunization with pre-S(2) containing HBsAg particles of the d and y subtypes indicated that T cell recognition of the pre-S(2) region is predominantly subtype-specific in murine strains of eight different H-2 haplotypes. Furthermore, the B10.M strain (H-2f) classified as a T cell nonresponder to the y subtype of the pre-S(2) region responds efficiently to the d subtype, indicating that pre-S(2) responder status can be subtype-dependent as well as subtype-specific. Studies using a truncated pre-S(2) polypeptide and synthetic peptides illustrated that the C-terminal sequence (p148-174) of the pre-S(2) region is the dominant focus of T cell recognition in multiple murine strains. Specifically, 17 distinct T cell recognition sites were defined within the C-terminal half of the pre-S(2) region. The fine specificity of T cell recognition of the pre-S(2) region was dependent on the H-2 haplotype of the responding strain. T cell recognition of all 17 sites was subtype specific, which is consistent with the fact that the C-terminal sequence is highly polymorphic between the d and y subtypes of the pre-S(2) region. Lastly, it was shown that the ability of synthetic peptides to elicit T cells cross-reactive with the native pre-S(2) region was variable and depended on the nature of the immunizing peptide. The pre-S(2)-containing HBsAg vaccines currently in clinical trials are composed of ra single subtype, either d or y. The results of this study suggest that both subtypes should be incorporated to increase the frequency of T cell responders to the pre-S(2) region, and to insure Th cell memory relevant to infection with hepatitis B virus of either the d or y subtypes.  相似文献   

3.
We previously demonstrated that in vivo antibody production to HBsAg in the mouse is regulated by at least two immune response (Ir) genes mapping in the I-A (HBs-Ir-1) and I-C (HBs-Ir-2) subregions of the H-2 locus. To confirm that H-2-linked Ir genes regulate the immune response to HBsAg at the T cell level and to determine if the same Ir genes function in T cell activation as in B cell activation, the HBsAg-specific T cell responses of H-2 congenic and intra-H-2 recombinant strains were analyzed. HBsAg-specific T cell proliferation, IL 2 production, and the surface marker phenotype of the proliferating T cells were evaluated. Additionally, T cell-antigen-presenting cell (APC) interactions were examined with respect to genetic restriction and the role of Ia molecules in HBsAg presentation. The HBsAg-specific T cell proliferative responses of H-2 congenic and intra-H-2 recombinant strains generally paralleled in vivo anti-HBs production in terms of the Ir genes involved, the hierarchy of responses status among H-2 haplotypes, antigen specificity, and kinetics. However, the correlation was not absolute in that several strains capable of producing group-specific anti-HBs in vivo did not demonstrate a group-specific T cell proliferative response to HBsAg. The proliferative responses to subtype- and group-specific determinants of HBsAg were mediated by Thy-1+, Lyt-1+2- T cells, and a possible suppressive role for Lyt-1-2+ T cells was observed. In addition to T cell proliferation, HBsAg-specific T cell activation could be measured in terms of IL 2 production, because anti-HBs responder but not nonresponder HBs-Ag-primed T cells quantitatively produced Il 2 in vitro. Finally, the T cell proliferative response to HBsAg was APC dependent and genetically restricted in that responder but not nonresponder parental APC could reconstitute the T cell response of (responder X nonresponder)F1 mice, and Ia molecules encoded in both the I-A and I-E subregion are involved in HBsAg-presenting cell function.  相似文献   

4.
The fine specificity of the humoral immune response to the pre-S(2) region of the hepatitis B surface antigen was studied. It was demonstrated that the murine antibody response to the pre-S(2) region is focused on residues 133 through 143, and two distinct but overlapping epitopes were identified within 11 continuous residues. One epitope, defined by p133-139, is group specific, and the other epitope, defined by p137-143, is influenced by a subtype-dependent amino acid substitution at residue 141. However, the influence of residue 141 was "covert" in that it was only detected when synthetic antigens of 19 amino acids or smaller were used as the solid-phase ligand. The minimum size of both epitopes (p133-139 and p137-143) was seven amino acids. The physical and chemical form of the immunogen (i.e., protein vs peptide; conjugated vs free peptide) influenced antibody fine specificity. In quantitative antibody inhibition studies it was demonstrated that antibodies with nonoverlapping as well as overlapping fine specificities were capable of mutual inhibition. Finally, human HBV-infected, patient sera were shown to possess anti-pre-S(2) region antibodies that recognized sequences in common with the murine antisera. These results have implications relevant to the design of synthetic and recombinant second generation HBV vaccines and diagnostic reagents.  相似文献   

5.
The role of the pre-S region of the hepatitis B surface Ag (HBsAg) particle in hypersensitivity to HBsAg was evaluated in mice. Plasma-derived or recombinant HBsAg was digested with pepsin to prepare different forms of HBsAg with or without pre-S region. Strains of mice including AKR/J (H-2k), A.SW (H-2s), C3H/He (H-2k), and CBA/J (H-2k) did not respond to the major S protein with regard to hypersensitivity. However, the pre-S-containing HBsAg overcame this nonresponsiveness. In BALB/c (H-2d) and A/J (H-2a) mice, the pre-S-containing HBsAg induced higher hypersensitivity than did the major S protein. The enhancement induced by the pre-S region was demonstrated to occur during the induction phase by crisscross assay using pre-S-containing HBsAg and major S protein as Ag. The patterns of hypersensitivity induced by the major S, middle S (composed of major S and pre-S2), and large S (composed of middle S and pre-S1 proteins) were also compared. The middle S protein induced responses of 1-h and 24-h hypersensitivities in major S non-responder (C3H/He and CBA/J) mice, whereas the large S protein circumvented only the 1-h one. The effectiveness to stimulate hypersensitivities in vivo by HBsAg is in the following order: middle S greater than large S greater than major S. These data suggest that the pre-S region of HBsAg particle can enhance both the 1-h and 24-h hypersensitivities in the afferent phase.  相似文献   

6.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

7.
It was previously demonstrated that the murine humoral immune responses to the common a and subtype-specific d determinants of HBsAg are H-2 restricted. The H-2q haplotype confers high responsiveness and the H-2s haplotype low responsiveness to nonresponsiveness to both determinants. We have now demonstrated that the H-2s haplotype also confers nonresponsiveness to the subtype-specific y determinant as well. Studies of H-2 congenic (nonresponder X responder)F1 and backcross mice indicated that responsiveness was inherited as a dominant trait, with no gene dosage effects observed. Qualitative characteristics of the humoral anti-a and anti-d responses were evaluated with respect to strain variation, kinetics, antigen specificity and antibody titer, affinity, and subclass distribution. Unique immune response patterns were observed for each H-2 haplotype studied. On the basis of these patterns, it was possible to construct a hierarchy of responsiveness to HBsAg of the ad subtype as follows: high responders, H-2q and H-2d; intermediate responders, H-2a greater than H-2b greater than H-2k; and nonresponders, H-2s.  相似文献   

8.
In the companion paper it was demonstrated that the T cell proliferative response to HBsAg was controlled by I region genes as was previously shown for in vivo anti-HBs production. In this paper, the structural requirements for T cell recognition of HBsAg were compared with B cell (antibody) recognition of HBsAg. Secondly, we attempted to map determinants on HBsAg required for activation of HBsAg-primed T cells, and we examined the influence of I region genotype on the observed T cell antigenic fine specificity. The results of these studies indicate clear differences between T cell and B cell recognition of HBsAg. T cell activation required significantly less native structure as compared with antibody binding to HBsAg. Reduced and alkylated HBsAg, the subunit polypeptide P25, tryptic fragments of P25, and synthetic peptide analogues of HBsAg were all capable of eliciting a T cell proliferative response, whereas these "denatured" forms of the antigen bind anti-HBs marginally or not at all. Furthermore, the results suggest that T cell recognition sites on HBsAg do not necessarily overlap with B cell recognition sites. Examination of T cell fine specificity in a series of H-2 congenic strains, with the use of HBsAg, P25, tryptic fragments of P25, and synthetic peptides, revealed multiple T cell recognition sites on HBsAg, and the particular site(s) recognized is dependent on the H-2 genotype of the responding strain. Finally, preliminary results indicate that the specificity of human, HBsAg-primed T cells appear to be variable among individuals.  相似文献   

9.
MHC-I-restricted CTL responses of H-2(d) (L(d+) or L(d-)) and F(1) H-2(dxb) mice to hepatitis B surface Ag (HBsAg) are primed by either DNA vaccines or HBsAg particles. The D(d)/S(201-209) and K(d)/S(199-208) epitopes are generated by processing endogenous HBsAg; the K(b)/S(208-215) epitope is generated by processing exogenous HBsAg; and the L(d)/S(28-39) epitope is generated by exogenous as well as endogenous processing of HBsAg. DNA vaccination primed high numbers of CTL specific for the L(d)/S(28-39) HBsAg epitope, low numbers of CTL specific for the D(d)/S(201-209) or K(d)/S(199-208) HBsAg epitopes in BALB/c mice, and high numbers of D(d)/S(201-209)- and K(d)/S(199-208)-specific CTL in congenic H-2(d)/L(d-) dm2 mice. In F(1)(dxb) mice, the K(d)-, D(d)-, and K(b)-restricted CTL responses to HBsAg were strikingly suppressed in the presence but efficiently elicited in the absence of L(d)/S(28-39)-specific CTL. Once primed, the K(d)- and D(d)-restricted CTL responses to HBsAg were resistant to suppression by immunodominant L(d)/S(28-39)-specific CTL. The L(d)-restricted immunodominant CTL reactivity to HBsAg can thus suppress priming to multiple alternative epitopes of HBsAg, independent of the processing pathway that generates the epitope, of the background of the mouse strain used, and of the presence/absence of different allelic variants of the K and D MHC class I molecules.  相似文献   

10.
In this study we used duck hepatitis B virus (DHBV)-infected Pekin ducks and heron hepatitis B virus (HHBV)-infected heron tissue to search for epitopes responsible for virus neutralization on pre-S proteins. Monoclonal antibodies were produced by immunizing mice with purified DHBV particles. Of 10 anti-DHBV specific hybridomas obtained, 1 was selected for this study. This monoclonal antibody recognized in both DHBV-infected livers and viremic sera a major (36-kilodalton) protein and several minor pre-S proteins in all seven virus strains used. In contrast, pre-S proteins of HHBV-infected tissue or viremic sera did not react. Thus, the monoclonal antibody recognizes a highly conserved DHBV pre-S epitope. For mapping of the epitope, polypeptides from different regions of the DHBV pre-S/S gene were expressed in Escherichia coli and used as the substrate for immunoblotting. The epitope was delimited to a sequence of approximately 23 amino acids within the pre-S region, which is highly conserved in four cloned DHBV isolates and coincides with the main antigenic domain as predicted by computer algorithms. In in vitro neutralization assays performed with primary duck hepatocyte cultures, the antibody reduced DHBV infectivity by approximately 75%. These data demonstrate a conserved epitope of the DHBV pre-S protein which is located on the surface of the viral envelope and is recognized by virus-neutralizing antibodies.  相似文献   

11.
The DNA sequence of the ground squirrel hepatitis virus (GSHV) genome predicts the existence of several proteins in addition to the major surface (S) and core antigens. These include the pre-S1 and pre-S2 proteins, initiated at sites within the open reading frame preceding and continuous with the coding region for the S gene product, and the X protein, the putative product of an independent reading frame. Using an antibody directed against a peptide predicted by codons 130 to 143 of the pre-S1 reading frame, we identified a 43-kilodalton product of the pre-S1 coding region in preparations of GSHV surface antigen purified from the sera of infected animals. In addition, by immunoprecipitation of S- and pre-S-specific in vitro translation products with ground squirrel sera obtained after GSHV infection, we determined that antibodies arise to both S and pre-S determinants. The antibody response to pre-S includes, in some cases, reactivity to pre-S1-specific domains and is not always associated with an anti-S response. Similarly, by production of the viral X gene product in vitro followed by immunoprecipitation with ground squirrel sera, we showed that antibodies to this viral gene product also arise during infection, indicating that X antigenic determinants are synthesized during viral infection and are recognized by the host immune system.  相似文献   

12.
Hepatitis B virus nucleocapsid particles (HBcAg) can function as a T cell-independent antigen when injected into athymic mice. However, immunization of euthymic mice with HBcAg results in dramatically increased anti-HBc titers. Therefore we have examined the murine T cell response to HBcAg in terms of immunogenicity, the influence of H-2-linked genes, and the fine specificity of T cell recognition using synthetic peptide analogs. The HBcAg was shown to be an extremely efficient immunogen in terms of T cell activation as measured by the in vivo dose required to induce T cell sensitization (1.0 microgram), and the minimal in vitro concentration required to elicit interleukin 2 (IL 2) production (0.03 ng/ml). The degree of T cell immunogenicity of HBcAg and its ability to directly activate B cells most likely explain the enhanced humoral response to HBcAg in euthymic mice and HBV-infected patients. The influence of H-2-linked genes on the humoral response to HBcAg was discernable, and high responder (H-2k,s,d), intermediate responder (H-2b,f), and low responder (H-2p) haplotypes were identified. The H-2-linked regulation of the T cell response correlated with in vivo anti-HBc production. Examination of the fine specificity of T cell recognition revealed HBcAg-specific T cells from a variety of strains recognize multiple but distinct sites within the HBcAg/HBeAg sequence. T cell recognition sites were defined by small (16 to 21 residue) synthetic peptides. Each strain recognized a predominant T cell determinant, and the fine specificity of this recognition process was dependent on the H-2 haplotype of the responding strain. For example H-2s,b strains recognized p120-140, H-2f,q strains recognized p100-120, and H-2d mice recognized p85-100 predominantly. Because these sequences are common to both HBcAg and a nonparticulate form of the antigen termed HBeAg, these results indicate that HBcAg and HBeAg are highly cross-reactive at the T cell level although they are serologically distinct. These findings may have clinical relevance, because T cell sensitization to HBeAg and the subsequent seroconversion to anti-HBe status correlates with viral clearance during hepatitis B infection.  相似文献   

13.
H-2k mice generate a secondary in vitro cytotoxic T lymphocyte response to Sendai virus 20- to 100-fold weaker than those of other haplotypes tested (H-2b,d,q,s). This immune response defect maps to both H-2K and H-2D. H-2k x H-2d F1 mice (responder x nonresponder) only lyse targets that have the d allele at H-2K and/or H-2D. H-2k targets are equally lysable with anti-Sendai antibody. Furthermore, H-2k mice demonstrate normal antibody and T cell proliferation responses to Sendai virus. The Ir gene defect therefore appears to be limited to the generation of the cytotoxic T lymphocytes.  相似文献   

14.
《Research in virology》1991,142(5):363-371
Serum samples from individuals immunized with a pepsinized or non-pepsinized vaccine and from patients who had recovered from acute hepatitis B or who developed a chronic form of the disease, were analysed for the presence of antibody against the pre-S2 epitope of the hepatitis B virus.Anti-pre-S2 antibody was absent in all but one individual immunized with the pepsinized vaccine. Thirty-eight percent of the subjects who responded by anti-HBs production to the non-pepsinized preparation showed anti-pre-S2 antibody one year after complete vaccination. Among subjects who did not produce anti-HBs after immunization with this vaccine, 1 single individual produced anti-pre-S2 antibody. Anti-preS2 antibody was detectable after one year in 38% of the patients who recovered from acute hepatitis B, but in none of those with chronic hepatitis B. The kinetics of anti-pre-S2 antibody response to a booster injection was also analysed 1 month and 1 year after the 3rd injection and 1 month after the 4th injection of the non-pepsinized vaccine.  相似文献   

15.
The two major envelope proteins (large [L] and small [S]) of duck hepatitis B virus are encoded by the pre-S/S open reading frame. The L protein is initiated from the AUG at position 801 in the pre-S region of the pre-S/S coding sequence, yielding an N-terminal consensus sequence for myristylation. Western immunoblots of the L protein often reveal a doublet at 36 and 35 kDa, with the latter attributed to the use of one of the three internal initiation codons. However, metabolic labelling with [3H]myristic acid results in labelling of both P35 and P36, indicating that both species must be initiated from the same start codon. Using metabolic labelling with 32P and digestion with residue-specific phosphatases, we demonstrate that L protein heterogeneity is due to phosphorylation of threonine and/or serine residues within the pre-S domain. We propose that at least one possible phosphorylation site is located at a novel (S/T)PPL motif which is conserved near the carboxyl end of the pre-S1 domain in all hepadnavirus sequences. Two to three additional (S/T)P motifs are also present in the carboxyl half of the pre-S1 (but not pre-S2 or S) domain of all hepadnaviruses. L protein in serum-derived particles is resistant to phosphatase digestion in the absence of detergents, reflecting an internal disposition of the phosphorylated pre-S domain and suggesting a role for dephosphorylation in the topological shift within L during morphogenesis (P. Ostapchuk, P. Hearing, and D. Ganem, EMBO J. 13:1048-1057, 1994). Furthermore, we observe that the relative amount of the phosphorylated form of L increases with time in the viral growth cycle. These findings imply that phosphorylation-dephosphorylation of the L protein is an important, regulated mechanism necessary for correct virion morphogenesis.  相似文献   

16.
Shih Yi Sheu  Szecheng J. Lo   《Gene》1995,160(2):179-184
To investigate the failure of high-level production of hepatitis B viral (HBV) surface antigen (HBsAg), including three authentic forms, large (L), middle (M) and major/small (S) HBsAg, in Escherichia coli, we employed the high-expression vector pGEX containing the glutathione S-transferase-encoding gene (GST) to study HBsAg production. Different fragments of HBV DNA containing the entire pre-S1/pre-S2/S region (for L protein), or partial pre-S1, pre-S2, pre-S1/pre-S2 and pre-S2/S region (for M protein), were fused downstream from the GST gene, in order to obtain five plasmids which encode GST-HBsAg fusion proteins. SDS-PAGE analyses revealed that cells containing plasmids with a full-length S region (pGLS and pGMS) produced undetectable GST-HBsAg fusion proteins, in contrast to those cells harboring plasmids without the S region (pGS1, pGS2 and pGS1S2), which synthesized fusion proteins in 3–10% of the total cellular protein. Using an immunoblot method to screen HBsAg production in cells which harbored plasmids derived from exonuclease BAL 31-digested pGLS, we obtained eight positive clones. Nucleotide sequence analyses of plasmids from the positive clones revealed that termination, deletion or frameshift occurred at the regions encoding either the first or the third transmembrane domain of the major HBsAg. Correlation between the production level of GST-HBsAg fusion proteins and their constituent and arrangement of amino acids (aa) at the last 20 as among 15 clones suggested that the fusion protein ended with a longer stretch of or a higher ratio of hydrophobic as had a lower production in E. coli.  相似文献   

17.
The susceptibility of the tree shrew Tupaia belangeri to human hepatitis B virus (HBV) has been demonstrated both in vivo and in vitro. In this study, we show that purified HBV infects primary T. belangeri hepatocyte cultures in a very specific manner, as detected by HBV covalently closed circular DNA, mRNA, HBV e antigen, and HBsAg production. A monoclonal antibody (MAb), MA18/7, directed against the pre-S1 domain of the large HBs protein, which has been shown to neutralize infectivity of HBV for primary human hepatocytes, also blocked infection of primary Tupaia hepatocytes. MAbs against the pre-S2 domain of HBs inhibited infection only partially, whereas an S MAb and polyvalent anti-HBs antibodies neutralized infection completely. Thus, both pre-S1 and S antigens are necessary for infection in the tupaia. Using subviral particles, >70% of primary Tupaia hepatocytes are capable of specific binding of pre-S1-rich HBsAg, showing localization in distinct membrane areas. The data show that the early steps of HBV infection in Tupaia hepatocyte cultures are comparable to those in the human system.  相似文献   

18.
构建了pSV2DHWS2S质粒,使dhfr扩增基因及乙型肝炎病毒的Pre-S_2+S基因分别在两个SV40早期启动子的调控之下。此质粒转化到CHO-dhfr~-细胞,经克隆、加氨甲喋呤(MTX)筛选、扩增,建立了3个高效分泌HBsAg中蛋白及主蛋白的克隆细胞系。检测了其中的M6细胞系生物学特性。结果表明,免疫电镜下可观察到22nm的颗粒;该细胞用转瓶连续培养60天,每2天收、换液1次,每升HBsAg平均产量为2.9mg。经初步纯化,在SDS-PAGE中显示23k、27k主蛋白带及33k、36k中蛋白带。主蛋白及中蛋白的反相血凝(RPHA)滴度分别为64和128;中蛋白的ELISA滴度为320。部分品系小鼠免疫后能产生滴度为8的抗Pre-S_2抗体。3只家免中仅有1只在免疫后第1、2周可测出Pre-S_2抗体,而3只兔的S抗体滴度都较高,持续时间也较长。  相似文献   

19.
It has been suggested that hepatitis B virus (HBV) binds to a receptor on the plasma membrane of human hepatocytes via the pre-S1 domain of the large envelope protein as an initial step in HBV infection. However, the nature of the receptor remains controversial. In an attempt to identify a cell surface receptor for HBV, purified recombinant fusion protein of the pre-S1 domain of HBV with glutathione S-transferase (GST), expressed in Escherichia coli, was used as a ligand. The surface of human hepatocytes or HepG2 cells was biotinylated, and the cell lysate (precleared lysate) which did not bind to GST and glutathione-Sepharose beads was used as a source of receptor molecules. The precleared lysate of the biotinylated cells was incubated with the GST-pre-S1 fusion protein, and the bound proteins were visualized by Western blotting and enhanced chemiluminescence. An approximately 80-kDa protein (p80) was shown to bind specifically to the pre-S1 domain of the fusion protein. The receptor binding assay using serially or internally deleted segments of pre-S1 showed that amino acid residues 12 to 20 and 82 to 90 are essential for the binding of pre-S1 to p80. p80 also bound specifically to the pre-S1 of native HBV particles. Analysis of the tissue and species specificity of p80 expression in several available human primary cultures and cell lines of different tissue origin showed that p80 expression is not restricted to human hepatocytes. Taken together the results suggest that p80 may be a component of the viral entry machinery.  相似文献   

20.
B E Eble  V R Lingappa    D Ganem 《Journal of virology》1990,64(3):1414-1419
The coding region for the hepatitis B virus surface antigens contains three in-phase ATG codons which direct the synthesis of three related polypeptides. The 24-kilodalton major surface (or S) glycoprotein is initiated at the most distal ATG and is a transmembrane protein whose translocation across the bilayer is mediated by at least two uncleaved signal sequences. The product of the next upstream ATG is the 31-kilodalton pre-S2 protein, which contains 55 additional amino acids attached to the N terminus of the S protein. This pre-S2-specific domain is translocated into the endoplasmic reticulum. Using a coupled in vitro translation-translocation system, we showed that (i) the pre-S2 domain itself lacks functional signal sequence activity, (ii) its translocation across the endoplasmic reticulum membrane is mediated by downstream signals within the S domain, and (iii) the N-terminal signal sequence of the S protein can translocate upstream protein domains in the absence of other signals. The hepatitis B virus pre-S2 protein is an example of a natural protein which displays upstream domain translocation, a phenomenon whose existence was originally inferred from the behavior of synthetic fusion proteins in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号