首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
This paper considers the impact of bias in the estimation of the association parameters for longitudinal binary responses when there are drop-outs. A number of different estimating equation approaches are considered for the case where drop-out cannot be assumed to be a completely random process. In particular, standard generalized estimating equations (GEE), GEE based on conditional residuals, GEE based on multivariate normal estimating equations for the covariance matrix, and second-order estimating equations (GEE2) are examined. These different GEE estimators are compared in terms of finite sample and asymptotic bias under a variety of drop-out processes. Finally, the relationship between bias in the estimation of the association parameters and bias in the estimation of the mean parameters is explored.  相似文献   

2.
Yi GY  He W 《Biometrics》2009,65(2):618-625
Summary .  Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease ( Volberding et al., 1990 , The New England Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined.  相似文献   

3.
Roy J 《Biometrics》2003,59(4):829-836
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.  相似文献   

4.
Longitudinal studies frequently incur outcome-related nonresponse. In this article, we discuss a likelihood-based method for analyzing repeated binary responses when the mechanism leading to missing response data depends on unobserved responses. We describe a pattern-mixture model for the joint distribution of the vector of binary responses and the indicators of nonresponse patterns. Specifically, we propose an extension of the multivariate logistic model to handle nonignorable nonresponse. This method yields estimates of the mean parameters under a variety of assumptions regarding the distribution of the unobserved responses. Because these models make unverifiable identifying assumptions, we recommended conducting sensitivity analyses that provide a range of inferences, each of which is valid under different assumptions for nonresponse. The methodology is illustrated using data from a longitudinal study of obesity in children.  相似文献   

5.
Missing data are a common problem in longitudinal studies in the health sciences. Motivated by data from the Muscatine Coronary Risk Factor (MCRF) study, a longitudinal study of obesity, we propose a simple imputation method for handling non-ignorable non-responses (i.e., when non-response is related to the specific values that should have been obtained) in longitudinal studies with either discrete or continuous outcomes. In the proposed approach, two regression models are specified; one for the marginal mean of the response, the other for the conditional mean of the response given non-response patterns. Statistical inference for the model parameters is based on the generalized estimating equations (GEE) approach. An appealing feature of the proposed method is that it can be readily implemented using existing, widely-available statistical software. The method is illustrated using longitudinal data on obesity from the MCRF study.  相似文献   

6.
Toledano AY  Gatsonis C 《Biometrics》1999,55(2):488-496
We propose methods for regression analysis of repeatedly measured ordinal categorical data when there is nonmonotone missingness in these responses and when a key covariate is missing depending on observables. The methods use ordinal regression models in conjunction with generalized estimating equations (GEEs). We extend the GEE methodology to accommodate arbitrary patterns of missingness in the responses when this missingness is independent of the unobserved responses. We further extend the methodology to provide correction for possible bias when missingness in knowledge of a key covariate may depend on observables. The approach is illustrated with the analysis of data from a study in diagnostic oncology in which multiple correlated receiver operating characteristic curves are estimated and corrected for possible verification bias when the true disease status is missing depending on observables.  相似文献   

7.
8.
Yuan Y  Little RJ 《Biometrics》2009,65(2):478-486
Summary .  Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects. MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate the models.  相似文献   

9.
In longitudinal studies investigators frequently have to assess and address potential biases introduced by missing data. New methods are proposed for modeling longitudinal categorical data with nonignorable dropout using marginalized transition models and shared random effects models. Random effects are introduced for both serial dependence of outcomes and nonignorable missingness. Fisher‐scoring and Quasi–Newton algorithms are developed for parameter estimation. Methods are illustrated with a real dataset.  相似文献   

10.
Generalized estimating equations (GEE) for the analysis of clustered data have gained increasing popularity. Recently, the first monograph on this method has been published. GEE have been repeatedly applied in controlled clinical trials. They have, however, been generally used as secondary or supplementary analysis. Instead, the primary analysis was mostly based on a classical method that usually ignored the clustered – mostly longitudinal – nature of the data. In this paper, we discuss the applicability of GEE as primary analysis in controlled clinical trials. From theoretical results in the literature, we derive recommendations how GEE should be used in therapeutic studies for testing statistical hypotheses. We hope that our paper is the starting point for a thorough discussion on the most appropriate analysis of controlled clinical trials with clustered dependent variables. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Summary The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.  相似文献   

12.
Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).  相似文献   

13.
14.
15.
Albert PS 《Biometrics》2000,56(2):602-608
Binary longitudinal data are often collected in clinical trials when interest is on assessing the effect of a treatment over time. Our application is a recent study of opiate addiction that examined the effect of a new treatment on repeated urine tests to assess opiate use over an extended follow-up. Drug addiction is episodic, and a new treatment may affect various features of the opiate-use process such as the proportion of positive urine tests over follow-up and the time to the first occurrence of a positive test. Complications in this trial were the large amounts of dropout and intermittent missing data and the large number of observations on each subject. We develop a transitional model for longitudinal binary data subject to nonignorable missing data and propose an EM algorithm for parameter estimation. We use the transitional model to derive summary measures of the opiate-use process that can be compared across treatment groups to assess treatment effect. Through analyses and simulations, we show the importance of properly accounting for the missing data mechanism when assessing the treatment effect in our example.  相似文献   

16.
Roy J  Lin X 《Biometrics》2000,56(4):1047-1054
Multiple outcomes are often used to properly characterize an effect of interest. This paper proposes a latent variable model for the situation where repeated measures over time are obtained on each outcome. These outcomes are assumed to measure an underlying quantity of main interest from different perspectives. We relate the observed outcomes using regression models to a latent variable, which is then modeled as a function of covariates by a separate regression model. Random effects are used to model the correlation due to repeated measures of the observed outcomes and the latent variable. An EM algorithm is developed to obtain maximum likelihood estimates of model parameters. Unit-specific predictions of the latent variables are also calculated. This method is illustrated using data from a national panel study on changes in methadone treatment practices.  相似文献   

17.
Marginal models for longitudinal continuous proportional data   总被引:5,自引:0,他引:5  
Song PX  Tan M 《Biometrics》2000,56(2):496-502
Summary. Continuous proportional data arise when the response of interest is a percentage between zero and one, e.g., the percentage of decrease in renal function at different follow‐up times from the baseline. In this paper, we propose methods to directly model the marginal means of the longitudinal proportional responses using the simplex distribution of Barndorff‐Nielsen and Jørgensen that takes into account the fact that such responses are percentages restricted between zero and one and may as well have large dispersion. Parameters in such a marginal model are estimated using an extended version of the generalized estimating equations where the score vector is a nonlinear function of the observed response. The method is illustrated with an ophthalmology study on the use of intraocular gas in retinal repair surgeries.  相似文献   

18.
Longitudinal data analysis using generalized linear models   总被引:186,自引:0,他引:186  
  相似文献   

19.
This article presents a likelihood-based method for handling nonignorable dropout in longitudinal studies with binary responses. The methodology developed is appropriate when the target of inference is the marginal distribution of the response at each occasion and its dependence on covariates. A "hybrid" model is formulated, which is designed to retain advantageous features of the selection and pattern-mixture model approaches. This formulation accommodates a variety of assumed forms of nonignorable dropout, while maintaining transparency of the constraints required for identifying the overall model. Once appropriate identifying constraints have been imposed, likelihood-based estimation is conducted via the EM algorithm. The article concludes by applying the approach to data from a randomized clinical trial comparing two doses of a contraceptive.  相似文献   

20.
Cook RJ  Zeng L  Yi GY 《Biometrics》2004,60(3):820-828
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the "last observation carried forward" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号