首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The fine structural specificities of six monoclonal antibodies (MAbs) to ganglioside GD2, GalNAc beta 1----4(NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4Glc-Cer, were studied. The binding specificities of these MAbs were found to differ from each other by virtue of their binding to structurally related authentic standard glycolipids as revealed by three different assay systems, including enzyme immunostaining on thin-layer chromatography, enzyme-linked immunosorbent assay, and immune adherence inhibition assay. The MAbs examined could be divided into three binding types. MAbs A1-201, A1-410, and A1-425 bound specifically to ganglioside GD2 and none of the other gangliosides tested. Two other MAbs (A1-245 and A1-267) reacted not only with GD2, but also with several other gangliosides having the sequence NeuAc alpha 2----8NeuAc alpha 2----3Gal (GD3, GD1b, GT1a, GT1b, and GQ1b). The reactivities with these gangliosides varied to some degree. In addition, these MAbs were found to react with both GD3(NeuAc-NeuAc) and GD3(NeuGc-NeuAc), but not with GD3(NeuAc-NeuGc) or GD3(NeuGc-NeuGc). The last MAb (A1-287) also reacted with several other gangliosides but with lower avidity than A1-245 and A1-267. These findings suggest that each MAb to ganglioside GD2 may have an individual binding specificity and avidity. These MAbs represent potentially useful reagents for analyzing the function of GD2 on cell surface membranes, and provide a system for precisely studying the interactions between an anti-ganglioside antibody and the binding epitope of the antigenic determinant.  相似文献   

2.
Seven monoclonal antibodies (MAbs) directed to tetrasialoganglioside (GQ1b) were established, purified GQ1b being used for immunization and hybridoma screening. All of the MAbs reacted strongly with GQ1b, although they also reacted with other gangliosides, with different specificities and reactivities. Some MAbs (1H10, 2C7, and 3F4) reacted with GD3, GT1a, GQ1b, and GP1c. MAb 1H4 showed broad specificity. It reacted with GD3, GD1b, GD2, GT1a, GT1b, GO1b, GQ1c, and GP1c. MAbs 7F5, 4E7, and 4F10 recognized GT1a, GQ1b, and GP1c. MAb 4F10 was more specific for GQ1b than the other MAbs. Using MAb 4F10, we determined, by means of an immunoassay, the quantities of endogenous GQ1b in some neuronal and adrenal cell lines, GOTO (human neuroblastoma), Neuro2a (mouse neuroblastoma), and PC12 (rat pheochromocytoma). PC12 and Neuro2a cells contained at least 5.1 X 10(6) and 3.9 X 10(5) molecules/cell of GQ1b, respectively. In contrast, no GQ1b was detected in GOTO cells, which are known for their specific neuritogenic response to this particular ganglioside when exogenously added.  相似文献   

3.
Four kinds of anti-GD3 monoclonal antibodies, DSG-1, -2, -3, and -4, of the IgM class were obtained by the immunization of BALB/c mice with enzootic bovine leukosis tumor tissue-derived ganglioside GD3 inserted into liposomes with Salmonella minnesota R595 lipopolysaccharides. The specificities of the monoclonal antibodies obtained were defined by complement-dependent liposome immune lysis assay and by enzyme immunostaining on thin-layer chromatography. The reactivities of the monoclonal antibodies obtained to four ganglioside GD3 variants [GD3(NeuAc-NeuAc), GD3(NeuAc-NeuGc), GD3(NeuGc-NeuAc), and GD3(NeuGc-NeuGc)] were tested. All of the monoclonal antibodies were found to react with GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc) but not with GD3(NeuGc-NeuAc) or GD3(NeuGc-NeuGc). Furthermore, various purified glycosphingolipids were used to determine the specificity of these monoclonal antibodies. All 4 antibodies reacted only with ganglioside GD3 [GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc)], but not with several gangliosides linking the GalNAc, Gal beta 1-3GalNAc, NeuAc alpha 2-3Gal beta 1-3GalNAc, or NeuAc alpha 2-8NeuAc alpha 2-3Gal beta 1-3GalNAc residue to the Gal moiety of ganglioside GD3 (GD2, GD1b, GT1b, or GQ1b, respectively), ganglioside GT1a having the same terminal NeuAc alpha 2-8NeuAc alpha 2-3Gal residue as ganglioside GD3, other gangliosides, and neutral glycosphingolipids. These findings suggest that the 4 monoclonal antibodies obtained may be specific for the epitope of NeuAc-alpha 2-8Sia alpha 2-3Gal beta 1-4Glc residue of ganglioside GD3.  相似文献   

4.
Biosynthesis of the c-series gangliosides GT3, GT2 and GP1c was studied in Golgi derived from rat liver. Competition experiments show that the synthesis of ganglioside GT2 (GalNAc beta 1----4-(NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal- beta 1----4Glc beta 1----1Cer) from GT3 (NeuAc alpha 2----8NeuAc alpha 2----8-NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) seems to be catalysed by the same N-acetylgalactosaminyl-transferase (GalNAc-T), which converts GM3 (NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) to GM2 (GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1Cer). Similar competition experiments suggest moreover that the sialytransferase V (SAT V), which catalyses the synthesis of GT1a (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4- (NeuAc alpha 2----3)-Gal beta 1----4Glc beta 1----1Cer) from GD1a (NeuAc alpha-2----3Gal beta 1----3GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1-Cer) appears to be identical to the enzyme that catalyses the synthesis of GP1c (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3-GalNAc beta 1----4(NeuAc alpha 2----8-NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta-1----4Glc beta 1----4Glc beta 1----1Cer) from GQ1c (NeuAc alpha 2----3Gal beta 1----3Gal-NAc beta 1----4 (NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4-Glc beta 1----1Cer).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
C-series gangliosides in rat hepatocytes and liver tissues were analyzed by thin-layer chromatographic (TLC) immunostaining with the specific monoclonal antibody A2B5. Primary cultures of hepatocytes isolated from adult rats were immunostained positively by A2B5. TLC immunostaining with A2B5 of gangliosides from the cells suggested that rat hepatocytes express c-series gangliosides including GT3, GT1c, GQ1c, and GP1c. Expression of c-series gangliosides in cultured hepatocytes was modulated by growth conditions of cells. The amount of GT3 was increased significantly by epidermal growth factor, while the contents of polysialo species such as GT1c, GQ1c, and GP1c were enhanced by higher cell density in culture. Examination of c-series gangliosides in rat liver tissues showed a unique developmental profile with a shift from GT3-dominant to polysialo species-dominant composition in late embryonic stages. These results suggest that the expression of c-series gangliosides in rat hepatocytes is regulated in a growth- and development-dependent manner.  相似文献   

6.
c-Series gangliosides in extraneural tissues from young and adult rats were examined using thin-layer chromatographic (TLC) immunostaining with a specific monoclonal antibody A2B5. The composition of c-series gangliosides significantly differed among tissues. In adult rats, while liver tissue contained GT1c, GQ1c, and GP1c, renal tissue had GT3 as the major c-series ganglioside with GT2 in a lesser amount. Pancreatic tissue expressed c-series gangliosides that consisted of GT3, GT2, GQ1c, and GP1c. In other tissues including adrenal, thyroid, and eye lens, GT3 constituted the main c-series ganglioside species. While total ganglioside contents of extraneural tissues were much lower than that of brain tissue, the proportions of c-series gangliosides to total gangliosides were higher in many extraneural tissues. Interestingly, eye lens had the highest GT3 content among rat tissues examined. The compositions and concentrations of c-series gangliosides in liver and kidney significantly differed between 5-day-old and 7-week-old rats, suggesting the development-dependent expression of c-series gangliosides in these tissues. These results suggest that the expression of c-series gangliosides in extraneural tissues is regulated in a tissue-specific manner.  相似文献   

7.
We established six murine monoclonal antibodies (MAbs) specific for b-pathway ganglio-series gangliosides by immunizing C3H/HeN mice with these purified gangliosides adsorbed to Salmonella minnesota mutant R595. The binding specificities of these MAbs were determined by an enzyme-linked immunosorbent assay and immunostaining on thin-layer chromatogram. These six MAbs, designated GGB19, GMR2, GMR7, GGR12, GMR5, and GGR13 reacted strongly with the gangliosides GD3, O-Ac-GD3, GD2, GD1b, GT1b, and GQ1b, respectively, that were used as immunogens. All these MAbs except GGB19 showed highly restricted binding specificities, reacting only with the immunizing ganglioside. None of other various authentic gangliosides or neutral glycolipids were recognized. On the other hand, MAb GGB19 exhibited a broader specificity, cross-reacting weakly with O-Ac-GD3, GQ1b, and GT1a, but not with other gangliosides or neutral glycolipids. Using these MAbs, we determined the expression of these gangliosides, especially GD1b, GT1b, and GQ1b on mouse, rat, and human leukemia cells. GD1b was expressed on rat leukemia cells, but not on mouse and human leukemia cells tested. Neither GT1b nor GQ1b was detected in these cell lines.  相似文献   

8.
A novel thin-layer chromatographic procedure has been developed that permits rapid, high-resolution separation of complex ganglioside mixtures and direct densitometric quantification. A special advantage of the new procedure, performed by two different consecutive runs on high-performance thin-layer chromatography plates, is an excellent separation of multisialogangliosides containing more than three sialic acid residues. Using the new procedure, 10 unidentified fractions were detected in embryonic chick brains. These gangliosides were clearly distinguishable from the known gangliosides, GM1, GD3, GD1a, GD2, GD1b, GT1b, and GQ1b. Eight of these “additional” fractions were also found in the brains of rays. From published data on the cod fish brain, 6 of the novel fractions are suggested to correspond to GT3, GT2, GT1c, GQ1c, GP1c, and GP1b. Four fractions, moving on thin-layer chromatography plates below the suggested GP1c have not been reported previously in any vertebrate. Due to their very slow migration rates they may contain gangliosides with six, seven, or more sialic acid residues. During development of the chicken, the relative amounts of the newly detected fractions decrease in favor of GT1b and GD1a.  相似文献   

9.
Glycosphingolipids (GSLs) and their sialic acid-containing derivatives, gangliosides, are important cellular components and are abundant in the nervous system. They are known to undergo dramatic changes during brain development. However, knowledge on the mechanisms underlying their qualitative and qualitative changes is still fragmentary. In this investigation, we have provided a detailed study on the developmental changes of the expression patterns of GSLs, GM3, GM1, GD3, GD1a, GD2, GD1b, GT1b, GQ1b, A2B5 antigens (c-series gangliosides such as GT3 and GQ1c), Chol-1alpha (GT1aalpha and GQ1balpha), glucosylceramide, galactosylceramide (O1 antigen), sulfatide (O4 antigen), stage-specific embryonic antigen-1 (Lewis x) glycolipids, and human natural killer-1 glycolipid (sulfoglucuronosyl paragloboside) in developing mouse brains [embryonic day 12 (E12) to adult]. In E12-E14 brains, GD3 was a predominant ganglioside. After E16, the concentrations of GD3 and GM3 markedly decreased, and the concentrations of a-series gangliosides, such as GD1a, increased. GT3, glucosylceramide, and stage-specific embryonic antigen-1 were expressed in embryonic brains. Human natural killer-1 glycolipid was expressed transiently in embryonic brains. On the other hand, Chol-1alpha, galactosylceramide, and sulfatide were exclusively found after birth. To provide a better understanding of the metabolic basis for these changes, we analyzed glycogene expression patterns in the developing brains and found that GSL expression is regulated primarily by glycosyltransferases, and not by glycosidases. In parallel studies using primary neural precursor cells in culture as a tool for studying developmental events, dramatic changes in ganglioside and glycosyltransferase gene expression were also detected in neurons induced to differentiate from neural precursor cells, including the expression of GD3, followed by up-regulation of complex a- and b-series gangliosides. These changes in cell culture systems resemble that occurring in brain. We conclude that the dramatic changes in GSL pattern and content can serve as useful markers in neural development and that these changes are regulated primarily at the level of glycosyltransferase gene expression.  相似文献   

10.
To examine the specificity of monoclonal antibody A2B5, four A2B5-reactive gangliosides (designated as G-1, G-2, G-3 and G-4) were purified from bonito fish brain. Ganglioside-1, -2, and -3 migrated above GD1b, below GQ1b, and far below GQ1b on thin-layer chromatography. Ganglioside-4 had the slowest chromatographic mobility and migrated below G-3. The structures of these gangliosides were characterized by overlay analysis with glycolipid-specific ligands, product analysis after sialidase or mild acid treatment, and electrospray ionization-mass spectrometry (ESI-MS). Accordingly, G-1, G-2 and G-3 were identified to be GT3, GQ1c and GP1c, respectively. The ganglioside G-4 was shown to have the following structure: NeuAc-NeuAc-NeuAc-Galbeta1-3Gal NAcbeta1-4(NeuAc-NeuAc-NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer. The antibody A2B5 reacted with these c-series gangliosides, but not with GD3 and other gangliosides and neutral glycosphingolipids. The antigenic epitope for A2B5 was assumed to include the trisialosyl residue connected to the inner galactose of the hemato- or ganglio-type oligosaccharide structure of gangliosides. Phylogenetic analysis of brain gangliosides using the A2B5 preparation demonstrated that c-series gangliosides are enriched in lower animals, especially bony fish of different species. The monoclonal antibody A2B5 would be a useful tool for examining the distribution and function of c-series gangliosides.  相似文献   

11.
Human anomalous killer (AK) cells lyse freshly isolated human melanoma cells which are insensitive to human natural killer cell-mediated lysis. Monoclonal antibody Leo Mel 3, an IgM (k), produced by a hybridoma obtained from a mouse immunized with human melanoma cells, binds to melanoma cells and inhibits their conjugate formation with AK cells as well as their AK cell-mediated lysis. Other IgM antibodies from the same fusion that bind melanoma cells do not inhibit (Werkmeister, J. A., Triglia, T., Andrews, P., and Burns, G. F. (1985) J. Immunol. 135, 689-695). Leo Mel 3 binds several different gangliosides from melanoma cells, as determined by immunostaining thin layer chromatograms. Binding is abolished by treatment of the gangliosides with neuraminidase. In solid-phase radioimmunoassay, Leo Mel 3 binds strongly to ganglioside GD2 and less strongly to gangliosides GT3, GD3, and GQ1b. It does not bind to other gangliosides including GM1, GM2, GM3, GD1a, GD1b, and GT1b. Thus, the epitope recognized by antibody Leo Mel 3 is found in the sugar sequence of ganglioside GD2, GalNAc beta 1-4[NeuAc alpha 2-8NeuAc alpha 2-3]Gal beta 1-4Glc beta 1 .... This sequence may contain a target in melanoma cells recognized by AK cells.  相似文献   

12.
We previously described the differential distribution of majorgangliosides (GM1, GD1a, GD1b, GT1b and GQ1b) in adult rat braindetected by specific antibodies (Kotani,M., Kawashima,I., Ozawa,I.,Terashima,T. and Tai,T. Glycobiology, 3, 137–146, 1993).We report here the distribution of minor gangliosides in theadult rat brain by an immunofluorescence technique with mousemonoclonal antibodies (MAbs). Ten MAbs (GMR6, GMB28, GMR11,GMR19, GMR2, GMR7, GGR51, AMR10, NGR54 and NGR53) that specificallyrecognize GM3, GM2, GT1a, GD3, O-Acdisialoganglioside, GD2,GM1b, GM4, IV3NeuAc  相似文献   

13.
Extended glycoconjugate binding specificities of three sialic acid-dependent immunoglobulin-like family member lectins (siglecs), myelin-associated glycoprotein (MAG), Schwann cell myelin protein (SMP), and sialoadhesin, were compared by measuring siglec-mediated cell adhesion to immobilized gangliosides. Synthetic gangliosides bearing the alpha-series determinant (NeuAc alpha2,6-linked to GalNAc on a gangliotetraose core) were tested, including GD1alpha (IV(3)NeuAc, III(6)NeuAc-Gg(4)OseCer), GD1alpha with modified sialic acid residues at the III(6)-position, and the "Chol-1" gangliosides GT1aalpha (IV(3)NeuAc, III(6)NeuAc, II(3)NeuAc-Gg(4)OseCer) and GQ1balpha (IV(3)NeuAc, III(6)NeuAc, II(3)(NeuAc)(2)-Gg(4)OseCer). The alpha-series gangliosides displayed enhanced potency for MAG- and SMP-mediated cell adhesion (GQ1balpha > GT1aalpha, GD1alpha > GT1b, GD1a > GM1 (nonbinding)), whereas sialoadhesin-mediated adhesion was comparable with alpha-series and non-alpha-series gangliosides. GD1alpha derivatives with modified sialic acids (7-, 8-, or 9-deoxy) or sulfate (instead of sialic acid) at the III(6)-position supported adhesion comparable with that of GD1alpha. Notably, a novel GT1aalpha analog with sulfates at two internal sites of sialylation (NeuAcalpha2,3Galbeta1,4GalNAc-6-sulfatebeta1, 4Gal3-sulfatebeta1,4Glcbeta1,1'ceramide) was the most potent siglec-binding structure tested to date (10-fold more potent than GT1aalpha in supporting MAG and SMP binding). Together with prior studies, these data indicate that MAG and SMP display an extended structural specificity with a requirement for a terminal alpha2, 3-linked NeuAc and great enhancement by nearby precisely spaced anionic charges.  相似文献   

14.
The binding specificities of amyloid beta-protein (A beta) such as A beta 1-40, A beta 1-42, A beta 40-1, A beta 1-38, A beta 25-35, and amyloid beta precursor protein (beta-APP) analogues for different glycosphingolipids were determined by surface plasmon resonance (SPR) using a liposome capture method. A beta 1-42, A beta 1-40, A beta 40-1, and A beta 1-38, but not A beta 25-35, bound to GM1 ganglioside in the following rank order: A beta 1-42 > A beta 40-1 > A beta 1-40 > A beta 1-38. The beta-APP analogues bound to GM1 ganglioside with a relatively lower affinity. Aged derivatives of A beta were found to have higher affinity to GM1 ganglioside than fresh or soluble derivatives. A beta 1-40 bound to a number of gangliosides with the following order of binding strength: GQ1b alpha > GT1a alpha > GQ1b > GT1b > GD3 > GD1a = GD1b > LM1 > GM1 > GM2 = GM3 > GM4. Neutral glycosphingolipids had a lower affinity for A beta 1-40 than gangliosides with the following order of binding strength: Gb4 > asialo-GM1 (GA1) > Gb3 > asialo-GM2 (GA2) = LacCer. The results seem to indicate that an alpha2,3NeuAc residue on the neutral oligosaccharide core is required for binding. In addition, the alpha2-6NeuAc residue linked to GalNAc contributes significantly to binding affinity for A beta.  相似文献   

15.
We investigated the localization of major gangliosides in adultrat brain by an immunofluorescence technique with mouse monoclonalantibodies (MAbs). Five MAbs (GMB16, GMR17, GGR12, GMR5 andGMR13) that specifically recognize gangliosides GM1, GD1a, GD1b,GT1b and GQ1b, respectively, were used. We have found that thereis a cell type-specific expression of the ganglioside in therat central nervous system. In cerebellar cortex, GM1 was expressedin myelin and some glial cells. GD1a was detected exclusivelyin the molecular layer. GD1b and GQ1b were present restrictedlyon the granular layer; GD1b was detected on the surface of thegranular cell bodies, whereas GQ1b was present in the cerebellarglomerulus. GT1b was distributed intensely in both the molecularlayer and the granular layer. In cerebral cortex, GM1 was detectedin some glial cells. Dense staining was limited to the whitematter. GD1a was distributed in layers I, II/III and Va, andthe upper part of layer VI, whereas GQ1b was localized in layersIV and Vb, and the lower part of layer VI. GD1b was detectedbeneath layer III. GT1b appeared to be distributed throughoutall layers. In other regions, such as hippocampal formationand spinal cord, the expression of the ganglioside was alsohighly localized to a specific cell type and layer. ganglioside monoclonal antibody rat brain  相似文献   

16.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

17.
Guillain-Barré syndrome (GBS) is an acute autoimmune neuropathy, often preceded by an infection. Serum anti-ganglioside antibodies are frequently elevated in titer. Those antibodies are useful for diagnosis. Some of them also may be directly involved in the pathogenetic mechanisms by binding to the regions where the respective target ganglioside is specifically localized. We have recently found the presence of the antibody that specifically recognizes a new conformational epitope formed by two gangliosides (ganglioside complex) in the acute-phase sera of some GBS patients. In particular, the antibodies against GD1a/GD1b and/or GD1b/GT1b complexes are associated with severe GBS requiring artificial ventilation. Some patients with Miller Fisher syndrome also have antibodies against ganglioside complexes including GQ1b; such as GQ1b/GM1 and GQ1b/GD1a. Gangliosides along with other components as cholesterol are known to form lipid rafts, in which the carbohydrate portions of two different gangliosides may form a new conformational epitope. Within the rafts, gangliosides are considered to interact with important receptors or signal transducers. The antibodies against ganglioside complexes may therefore directly cause nerve conduction failure and severe disability in GBS. More study is needed to elucidate the roles of the antibodies against ganglioside complexes.  相似文献   

18.
Guillain–Barré syndrome (GBS) is an acute autoimmune neuropathy, often preceded by an infection. Serum anti-ganglioside antibodies are frequently elevated in titer. Those antibodies are useful for diagnosis. Some of them also may be directly involved in the pathogenetic mechanisms by binding to the regions where the respective target ganglioside is specifically localized. We have recently found the presence of the antibody that specifically recognizes a new conformational epitope formed by two gangliosides (ganglioside complex) in the acute-phase sera of some GBS patients. In particular, the antibodies against GD1a/GD1b and/or GD1b/GT1b complexes are associated with severe GBS requiring artificial ventilation. Some patients with Miller Fisher syndrome also have antibodies against ganglioside complexes including GQ1b; such as GQ1b/GM1 and GQ1b/GD1a. Gangliosides along with other components as cholesterol are known to form lipid rafts, in which the carbohydrate portions of two different gangliosides may form a new conformational epitope. Within the rafts, gangliosides are considered to interact with important receptors or signal transducers. The antibodies against ganglioside complexes may therefore directly cause nerve conduction failure and severe disability in GBS. More study is needed to elucidate the roles of the antibodies against ganglioside complexes.  相似文献   

19.
It was previously reported that monoclonal IgM from two patients with gammopathy and neuropathy showed similar specificity by reacting with the same group of unidentified minor components in the ganglioside fractions of human nervous tissues (Ilyas, A. A., Quarles, R. H., Dalakas, M. C., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6697-6700). Enzymatic degradation, ion-exchange chromatography, and immunostaining of purified ganglioside standards on thin-layer chromatograms have now revealed that the antigenic glycolipids recognized by the IgM from these patients are gangliosides GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1Cer(GM2), GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer (IV4GalNAcGM1b), and GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4 beta Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1-Cer (IV4GalNAcGD1a). The monoclonal IgM appears to be reacting with the terminal [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-] moiety shared by these three gangliosides and is a useful probe for detecting small amounts of GM2, IV4GalNAcGM1b, IV4GalNAcGD1a, and other gangliosides with the same terminal sugar configuration in tissues. Species distribution studies using the antibody revealed that GM2 is present in the brains and nerves of all species examined, while IV4GalNAcGM1b and IV4GalNAcGD1a exhibit some striking species specificity. GM2, but not IV4GalNAcGD1a, is enriched in purified myelin from human brain.  相似文献   

20.
Nuclear gangliosides were characterized using two distinct fractions of large (N1) and small (N2) nuclear populations from rat brain. The ganglioside concentration of N1 nuclei from adult rat brain was 0.92 microg sialic acid/mg protein, which was about 3.8 times higher than that of N2 nuclei. N1 and N2 nuclear gangliosides showed similar compositional profiles; they contained major gangliosides of GM1, GD1a, GD1b, and GT1b, with GM3 in lesser amounts. c-Series gangliosides such as GT3, GQ1c, and GP1c were also detected in both nuclear preparations. Nuclear localization of gangliosides was confirmed by immunofluorescence with anti-GM1 antibody, cholera toxin B subunit, and c-series ganglioside-specific monoclonal antibody A2B5. Developmental changes of nuclear gangliosides were examined using rats of different ages ranging from embryonic day 14 (E14) to postnatal 7 weeks. The concentration of N1 nuclear gangliosides changed only slightly during development and did not correlate with that of whole-brain gangliosides. The developmental pattern of ganglioside composition of N1 nuclei was also distinguished from that of microsomal membranes; the ganglioside changes in N1 nuclei included reduced expression of di- and polysialogangliosides at E16 and higher proportions of GM3 at early and late stages of the period. These findings suggest that gangliosides in nuclear membranes are developmentally regulated in a distinct manner in brain cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号