首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cdc25C expression in meiotically competent and incompetent goat oocytes   总被引:2,自引:0,他引:2  
Change in Cdc25C expression and localization during maturation and meiotic competence acquisition was investigated in goat oocytes. Western blot analysis revealed that Cdc25C is constitutively expressed throughout meiosis in competent goat oocytes, with changes in its phosphorylation level. Cdc25C was detected at 55 and 70 kDa, representing the nonphosphorylated form and the hyperphosphorylated active form, respectively. During the G2-M transition at meiosis resumption, Cdc25C was hyperphosphorylated as evidenced by a clear shift from 55 to 70 kDa. Okadaic acid which induced premature meiosis resumption associated with MPF activation also involved a premature shift from 55 to 70 kDa in goat competent oocytes. After artificial activation of goat oocytes, Cdc25C returned to its 55 kDa form. By indirect immunofluorescence, Cdc25C was found essentially localized in the nucleus at the germinal vesicle stage, suggesting that Cdc25C functions within the nucleus to regulate MPF activation. Concomitantly with germinal vesicle breakdown, Cdc25C was redistributed throughout the cytoplasm. The amount of Cdc25C, very low in incompetent oocytes, increased with meiosis competence acquisition. On the other hand, during oocyte growth while the expression of Cdc25C increased, its phosphorylation level increased concomitantly as well as its nuclear translocation. These results suggest that meiosis resumption needs a sufficient amount of Cdc25C which must be completely phosphorylated and nuclear and that the amount of Cdc25C may be a limiting factor for meiotic competence acquisition. We could consider that Cdc25C nuclear translocation and phosphorylation, during oocyte growth, prepare the oocytes in advance for the G2-M phase transition occurring during meiosis resumption.  相似文献   

2.
In mammalian oocytes, meiosis arrests at prophase I. Meiotic resumption requires activation of Maturation-Promoting Factor (MPF), comprised of a catalytic Cyclin-dependent kinase-1 (Cdk1) and a regulatory subunit cyclin B, and results in germinal vesicle breakdown (GVBD). Cyclic AMP (cAMP)-mediated Protein Kinase A (PKA) activity sustains prophase arrest by inhibiting Cdk1. However, the link between PKA activity and MPF inhibition remains unclear. Cdc25 phosphatases can activate Cdks by removing inhibitory phosphates from Cdks. Thus one method for sustaining prophase arrest could be inhibition of the activity of the Cdc25 protein required for MPF activation. Indeed, studies in Xenopus identify Cdc25C as a target of PKA activity in meiosis. However, in mice, studies suggest that Cdc25B is the phosphatase essential for GVBD and, therefore, the likely target of PKA activity. To assess these questions, we targeted a potential PKA substrate, a highly conserved serine 321 residue of Cdc25B and evaluated the effect on oocyte maturation. A Cdc25B-Ser321Ala point mutant mRNA induces GVBD when injected into prophase-arrested oocytes more rapidly than wild type mRNA. Using fluorescently-tagged proteins we also determined that the mutant protein enters the nucleus more rapidly than its wildtype counterpart. These data suggest that phosphorylation of the Ser321 residue plays a key role in the negative regulation and localization of Cdc25B during prophase arrest. PKA also phosphorylates a wildtype Cdc25B protein but not a Ser321Ala mutant protein in vitro. Mutation of Ser321 in Cdc25B also affects its association with a sequestering protein, 14-3-3. Our studies suggest that Cdc25B is a direct target of PKA in prophase-arrested oocytes and that Cdc25B phosphorylation results in its inhibition and sequestration by the 14-3-3 protein.  相似文献   

3.
Chen J  Dai G  Wang YQ  Wang S  Pan FY  Xue B  Zhao DH  Li CJ 《FEBS letters》2006,580(15):3624-3630
Ultraviolet (UV) irradiation can result in cell cycle arrest. The reactivation of Polo-like kinase 1 (Plk1) is necessary for cell cycle reentry. But the mechanism of how Plk1 regulates p53 in UV-induced mitotic arrest cells remained elusive. Here we find that UV treatment leads HEK293 cells to inverse changes of Plk1 and p53. Over-expression of Plk1 rescue UV-induced mitotic arrest cells by inhibiting p53 activation. Plk1 could also inhibit p53 phosphorylation at Ser15, thus facilitates its nuclear export and degradation. Further examination shows that Plk1, p53 and Cdc25C can form a large complex. Plk1 could bind to the sequence-specific DNA-binding domain of p53 and active Cdc25C by hyperphosphorylation. These results hypothesize that Plk1 and Cdc25C participate in recovery the mitotic arrest through binding to the different domain of p53. Cdc25C may first be actived by Plk1, and then its phosphatase activity makes p53 dephosphorylated at Ser15.  相似文献   

4.
M-phase Promoting Factor (MPF; the cyclin B-cdk 1 complex) is activated at M-phase onset by removal of inhibitory phosphorylation of cdk1 at thr-14 and tyr-15. At M-phase exit, MPF is destroyed by ubiquitin-dependent cyclin proteolysis. Thus, control of MPF activity via inhibitory phosphorylation is believed to be particularly crucial in regulating transition into, rather than out of, M-phase. Using the in vitro cell cycle system derived form Xenopus eggs, here we show, however, that inhibitory phosphorylation of cdk1 contributes to control MPF activity during M-phase exit. By sampling extracts at very short intervals during both meiotic and mitotic exit, we found that cyclin B1-associated cdk1 underwent transient inhibitory phosphorylation at tyr-15 and that cyclin B1-cdk1 activity fell more rapidly than the cyclin B1 content. Inhibitory phosphorylation of MPF correlated with phosphorylation changes of cdc25C, the MPF phosphatase, and physical interaction of cdk1 with wee1, the MPF kinase, during M-phase exit. MPF down-regulation required Ca(++)/calmodulin-dependent kinase II (CaMKII) and cAMP-dependent protein kinase (PKA) activities at meiosis and mitosis exit, respectively. Treatment of M-phase extracts with a mutant cyclin B1-cdk1AF complex, refractory to inhibition by phosphorylation, impaired binding of the Anaphase Promoting Complex/Cyclosome (APC/C) to its co-activator Cdc20 and altered M-phase exit. Thus, timely M-phase exit requires a tight coupling of proteolysis-dependent and proteolysis-independent mechanisms of MPF inactivation.  相似文献   

5.
Plk1 (Polo-like kinase 1), an evolutionarily conserved serine/threonine kinase, is crucially involved in multiple events during the M phase. Here we have identified a consensus phosphorylation sequence for Plk1, by testing the ability of systematically mutated peptides derived from human Cdc25C to serve as a substrate for Plk1. The obtained results show that a hydrophobic amino acid at position +1 carboxyl-terminal of phosphorylated Ser/Thr and an acidic amino acid at position -2 are important for optimal phosphorylation by Plk1. We have then found that Myt1, an inhibitory kinase for MPF, has a number of putative phosphorylation sites for Plk1 in its COOH-terminal portion. While wild-type Myt1 (Myt1-WT) served as a good substrate for Plk1 in vitro, a mutant Myt1 (Myt1-4A), in which the four putative phosphorylation sites are replaced by alanines, did not. In nocodazole-treated cells, Myt1-WT, but not Myt1-4A, displayed its mobility shift in gel electrophoresis, due to phosphorylation. These results suggest that Plk1 phosphorylates Myt1 during M phase. Thus, this study identifies a novel substrate for Plk1 by determining a consensus phosphorylation sequence by Plk1.  相似文献   

6.
Fully grown Xenopus oocyte is arrested at prophase I of meiosis. Re-entry into meiosis depends on the activation of MPF (M-phase promoting factor or cyclin B.Cdc2 complex), triggered by progesterone. The prophase-arrested oocyte contains a store of Cdc2. Most of the protein is present as a monomer whereas a minor fraction, called pre-MPF, is found to be associated with cyclin B. Activation of Cdc2 depends on two key events: cyclin binding and an activating phosphorylation on Thr-161 residue located in the T-loop. To get new insights into the regulation of Thr-161 phosphorylation of Cdc2, monomeric Cdc2 was isolated from prophase oocytes. Based on its activation upon cyclin addition and detection by an antibody directed specifically against Cdc2 phosphorylated on Thr-161, we show for the first time that the prophase oocyte contains a significant amount of monomeric Cdc2 phosphorylated on Thr-161. PP2C, a Mg2+-dependent phosphatase, negatively controls Thr-161 phosphorylation of Cdc2. The unexpected presence of a population of free Cdc2 already phosphorylated on Thr-161 could contribute to the generation of the Cdc2 kinase activity threshold required to initiate MPF amplification.  相似文献   

7.
By using cycling Xenopus egg extracts, we have previously found that if mitogen-activated protein kinase (p42 MAPK) is activated on entry into mitosis (M-phase), the extract is arrested with condensed chromosomes and spindle microtubules. Here we show that these arrested extracts have high levels of M-phase promoting factor (MPF, Cyclin B/Cdc2) activity, stabilized levels of Cyclin B, and sustained M-phase-specific phosphorylations. We also examined the role of p42 MAPK in DNA damage checkpoint-arrested extracts that were induced to enter M-phase by the addition of Cdc25C protein. In these extracts, Cdc25C protein triggers the abrupt, premature activation of MPF and entry into M-phase. MPF activity then drops suddenly due to Cyclin B proteolysis, just as p42 MAPK is activated. Unexpectedly, however, M-phase is sustained, as judged by maintenance of M-phase-specific phosphorylations and condensed chromosomes. To determine if this M-phase arrest depended on p42 MAPK activation, we added PD98059 (PD), an inhibitor of p42 MAPK activation, to egg extracts with exogenous Cdc25. Both untreated and PD-treated extracts entered M-phase simultaneously, with a sharp peak of MPF activity. However, only PD-treated extracts subsequently exited from M-phase and entered interphase. In PD-treated extracts, p42 MAPK was not activated, and the transition to interphase was accompanied by the formation of decondensed nuclei and the disappearance of M-phase-specific phosphorylation of proteins. These results show that although entry into M-phase requires the activation of MPF, exit from M-phase even after cyclin destruction, is dependent on the inactivation of p42 MAPK.  相似文献   

8.
Feng C  Yu A  Liu Y  Zhang J  Zong Z  Su W  Zhang Z  Yu D  Sun QY  Yu B 《Biology of reproduction》2007,77(3):560-568
The activation of AKT (also called protein kinase B) is thought to be a critical step in the phosphoinositide 3-kinase pathway that regulates cell growth and differentiation. In this report, we investigated the role of AKT in the regulation of mouse early embryo development. Injection of mRNA coding for a constitutively active myristoylated AKT (myr-Akt1) into one-cell stage fertilized eggs induced cell division more effectively than injection of wild-type AKT (Akt1-WT) mRNA, whereas microinjection of mRNA of kinase-deficient AKT (Akt1-KD) delayed the first mitotic division. Meanwhile, microinjection of different kinds of mRNA of AKT affected the phosphorylation status of CDC2A-Tyr15 and the activation of M-phase promoting factor (MPF). To investigate the intermediate factor between AKT and MPF, we then injected one-cell stage eggs first with Akt1-WT mRNA or myr-Akt1 mRNA and then with mRNA encoding either wild-type CDC25B (Cdc25b-WT) or a AKT-nonphosphorylatable Ser351 to Ala CDC25B mutant (Cdc25b-S351A). Cdc25b-S351A strongly inhibited the effect of AKT. Therefore, AKT causes the activation of MPF and strongly promotes the development of one-cell stage mouse fertilized eggs by inducing AKT-dependent phosphorylation of CDC25B, a member of the CDC25 phosphatase family. Our finding that CDC25B acts as a potential target of AKT provides new insight into the effect of AKT in the regulation of early development of mouse embryos.  相似文献   

9.
In response to G2 DNA damage, the p53 pathway is activated to lead to cell‐cycle arrest, but how p53 is eliminated during the subsequent recovery process is poorly understood. It has been established that Polo‐like kinase 1 (Plk1) controls G2 DNA‐damage recovery. However, whether Plk1 activity contributes to p53 inactivation during this process is unknown. In this study, we show that G2 and S‐phase‐expressed 1 (GTSE1) protein, a negative regulator of p53, is required for G2 checkpoint recovery and that Plk1 phosphorylation of GTSE1 at Ser 435 promotes its nuclear localization, and thus shuttles p53 out of the nucleus to lead to its degradation during the recovery.  相似文献   

10.
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.  相似文献   

11.
Regulation of cell cycle progression involves redox (oxidation-reduction)-dependent modification of proteins including the mitosis-inducing phosphatase Cdc25C. The role of vitamin C (ascorbic acid, ASC), a known modulator of the cellular redox status, in regulating mitotic entry was investigated in this study. We demonstrated that vitamin C inhibits DNA synthesis in HeLa cells and, mainly the form of dehydroascorbic acid (DHA), delays the entry of p53-deficient synchronized HeLa and T98G cancer cells into mitosis. High concentrations of Vitamin C caused transient S and G2 arrest in both cell lines by delaying the activation of the M-phase promoting factor (MPF), Cdc2/cyclin-B complex. Although vitamin C did not inhibit the accumulation of cyclin-B1, it may have increased the level of Cdc2 inhibitory phosphorylation. This was achieved by transiently maintaining Cdc25C, the activator of Cdc2, both in low levels and in a phosphorylated on Ser216 inactive form that binds to 14-3-3 proteins contributing thus to the nuclear exclusion of Cdc25C. As expected, vitamin C prevented the nuclear accumulation of Cdc25C in both cell lines. In conclusion, it seems that vitamin C induces transient cell cycle arrest, at least in part, by delaying the accumulation and the activation of Cdc25C.  相似文献   

12.
The Cdc25C phosphatase is a key activator of Cdc2/cyclin B that controls M-phase entry in eukaryotic cells. Here we discuss the regulation of Cdc25C by phosphorylation during the meiotic maturation of Xenopus oocytes. In G2 arrested oocytes, Cdc25C is phosphorylated on Ser287 and associated with 14-3-3 proteins. Entry of the oocytes into M-phase of meiosis is triggered by progesterone, which activates a signaling pathway leading to the dephosphorylation of Ser287, probably mediated by the PP1 phosphatase. The activation of Cdc25C during oocyte maturation correlates also with its phosphorylation on multiple sites. These phosphorylations involve several signaling pathways, including Polo kinases and MAP kinases, and might require also the inhibition of the PP2A phosphatase. Finally, Cdc25C is further phosphorylated by its substrate Cdc2/cyclin B, as part of an auto-amplification loop that ensures the high Cdc2/cyclin B activity level required to drive the oocyte through the meiotic cell cycle.  相似文献   

13.
Xenopus oocytes arrested in prophase I resume meiotic division in response to progesterone and arrest at metaphase II. Entry into meiosis I depends on the activation of Cdc2 kinase [M-phase promoting factor (MPF)]. To better understand the role of Cdc2, MPF activity was specifically inhibited by injection of the CDK inhibitor, Cip1. When Cip1 is injected at germinal vesicle breakdown (GVBD) time, Cdc25 and Plx1 are both dephosphorylated and Cdc2 is rephosphorylated on tyrosine. The autoamplification loop characterizing MPF is therefore not only required for MPF generation before GVBD, but also for its stability during the GVBD period. The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), responsible for cyclin degradation, is also under the control of Cdc2; therefore, Cdc2 activity itself induces its own inactivation through cyclin degradation, allowing the exit from the first meiotic division. In contrast, cyclin accumulation, responsible for Cdc2 activity increase allowing entry into metaphase II, is independent of Cdc2. The c-Mos/mitogen-activated protein kinase (MAPK) pathway remains active when Cdc2 activity is inhibited at GVBD time. This pathway could be responsible for the sustained cyclin neosynthesis. In contrast, during the metaphase II block, the c-Mos/MAPK pathway depends on Cdc2. Therefore, the metaphase II block depends on a dynamic interplay between MPF and CSF, the c-Mos/MAPK pathway stabilizing cyclin B, whereas in turn, MPF prevents c-Mos degradation.  相似文献   

14.
The anaphase-promoting complex (APC) or cyclosome is a ubiquitin ligase that initiates anaphase and mitotic exit. APC activation is thought to depend on APC phosphorylation and Cdc20 binding. We have identified 43 phospho-sites on APC of which at least 34 are mitosis specific. Of these, 32 sites are clustered in parts of Apc1 and the tetratricopeptide repeat (TPR) subunits Cdc27, Cdc16, Cdc23 and Apc7. In vitro, at least 15 of the mitotic phospho-sites can be generated by cyclin-dependent kinase 1 (Cdk1), and 3 by Polo-like kinase 1 (Plk1). APC phosphorylation by Cdk1, but not by Plk1, is sufficient for increased Cdc20 binding and APC activation. Immunofluorescence microscopy using phospho-antibodies indicates that APC phosphorylation is initiated in prophase during nuclear uptake of cyclin B1. In prometaphase phospho-APC accumulates on centrosomes where cyclin B ubiquitination is initiated, appears throughout the cytosol and disappears during mitotic exit. Plk1 depletion neither prevents APC phosphorylation nor cyclin A destruction in vivo. These observations imply that APC activation is initiated by Cdk1 already in the nuclei of late prophase cells.  相似文献   

15.
The entry into mitosis is controlled by Cdc2/cyclin B, also known as maturation or M-phase promoting factor (MPF). In Xenopus egg extracts, the inhibitory phosphorylations of Cdc2 on Tyr-15 and Thr-14 are controlled by the phosphatase Cdc25 and the kinases Myt1 and Wee1. At mitosis, Cdc25 is activated and Myt1 and Wee1 are inactivated through phosphorylation by multiple kinases, including Cdc2 itself. The Cdc2-associated Suc1/Cks1 protein (p9) is also essential for entry of egg extracts into mitosis, but the molecular basis of this requirement has been unknown. We find that p9 strongly stimulates the regulatory phosphorylations of Cdc25, Myt1, and Wee1 that are carried out by the Cdc2/cyclin B complex. Overexpression of the prolyl isomerase Pin1, which binds to the hyperphosphorylated forms of Cdc25, Myt1, and Wee1 found at M-phase, is known to block the initiation of mitosis in egg extracts. We have observed that Pin1 specifically antagonizes the stimulatory effect of p9 on phosphorylation of Cdc25 by Cdc2/cyclin B. This observation could explain why overexpression of Pin1 inhibits mitotic initiation. These findings suggest that p9 promotes the entry into mitosis by facilitating phosphorylation of the key upstream regulators of Cdc2.  相似文献   

16.
In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.  相似文献   

17.
Cdc2-cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes   总被引:2,自引:0,他引:2  
Xenopus oocytes are arrested in meiotic prophase I and resume meiotic divisions in response to progesterone. Progesterone triggers activation of M-phase promoting factor (MPF) or Cdc2-cyclin B complex and neosynthesis of Mos kinase, responsible for MAPK activation. Both Cdc2 and MAPK activities are required for the success of meiotic maturation. However, the signaling pathway induced by progesterone and leading to MPF activation is poorly understood, and most of the targets of both Cdc2 and MAPK in the oocyte remain to be determined. Aurora-A is a Ser/Thr kinase involved in separation of centrosomes and in spindle assembly during mitosis. It has been proposed that in Xenopus oocytes Aurora-A could be an early component of the progesterone-transduction pathway, acting through the regulation of Mos synthesis upstream Cdc2 activation. We addressed here the question of Aurora-A regulation during meiotic maturation by using new in vitro and in vivo experimental approaches. We demonstrate that Cdc2 kinase activity is necessary and sufficient to trigger both Aurora-A phosphorylation and kinase activation in Xenopus oocyte. In contrast, these events are independent of the Mos/MAPK pathway. Aurora-A is phosphorylated in vivo at least on three residues that regulate differentially its kinase activity. Therefore, Aurora-A is under the control of Cdc2 in the Xenopus oocyte and could be involved in meiotic spindle establishment.  相似文献   

18.
We have characterized plk1 in mouse oocytes during meiotic maturation and after parthenogenetic activation until entry into the first mitotic division. Plk1 protein expression remains unchanged during maturation. However, two different isoforms can be identified by SDS-PAGE. A fast migrating form, present in the germinal vesicle, seems characteristic of interphase. A slower form appears as early as 30 min before germinal vesicle breakdown (GVBD), is maximal at GVBD, and is maintained throughout meiotic maturation. This form gradually disappears after exit from meiosis. The slow form corresponds to a phosphorylation since it disappears after alkaline phosphatase treatment. Plk1 activation, therefore, takes place before GVBD and MAPK activation since plk1 kinase activity correlates with its slow migrating phosphorylated form. However, plk1 phosphorylation is inhibited after treatment with two specific p34(cdc2) inhibitors, roscovitine and butyrolactone, suggesting plk1 involvement in the MPF autoamplification loop. During meiosis plk1 undergoes a cellular redistribution consistent with its putative targets. At the germinal vesicle stage, plk1 is found diffusely distributed in the cytoplasm and enriched in the nucleus and during prometaphase is localized to the spindle poles. At anaphase it relocates to the equatorial plate and is restricted to the postmitotic bridge at telophase. After parthenogenetic activation, plk1 becomes dephosphorylated and its activity drops progressively. Upon entry into the first mitotic M-phase at nuclear envelope breakdown plk1 is phosphorylated and there is an increase in its kinase activity. At the two-cell stage, the fast migrating form with weak kinase activity is present. In this work we show that plk1 is present in mouse oocytes during meiotic maturation and the first mitotic division. The variation of plk1 activity and subcellular localization during this period suggest its implication in the organization and progression of M-phase.  相似文献   

19.
Xiao J  Liu C  Hou J  Cui C  Wu D  Fan H  Sun X  Meng J  Yang F  Wang E  Yu B 《The Journal of biological chemistry》2011,286(12):10356-10366
It is well documented that protein kinase A (PKA) acts as a negative regulator of M phase promoting factor (MPF) by phosphorylating cell division cycle 25 homolog B (Cdc25B) in mammals. However, the molecular mechanism remains unclear. In this study, we identified PKA phosphorylation sites in vitro by LC-MS/MS analysis, including Ser(149), Ser(229), and Ser(321) of Cdc25B, and explored the role of Ser(149) in G(2)/M transition of fertilized mouse eggs. The results showed that the overexpressed Cdc25B-S149A mutant initiated efficient MPF activation by direct dephosphorylation of Cdc2-Tyr(15), resulting in triggering mitosis prior to Cdc25B-WT. Conversely, overexpression of the phosphomimic Cdc25B-S149D mutant showed no significant difference in comparison with the control groups. Furthermore, we found that Cdc25B-Ser(149) was phosphorylated at G(1) and S phases, whereas dephosphorylated at G(2) and M phases, and the phosphorylation of Cdc25B-Ser(149) was modulated by PKA in vivo. In addition, we examined endogenous and exogenous Cdc25B, which were expressed mostly in the cytoplasm at the G(1) and S phases and translocated to the nucleus at the G(2) phase. Collectively, our findings provide evidence that Ser(149) may be another potential PKA phosphorylation target of Cdc25B in G(2)/M transition of fertilized mouse eggs and Cdc25B as a direct downstream substrate of PKA in mammals, which plays important roles in the regulation of early development of mouse embryos.  相似文献   

20.
为阐明细胞分裂周期(Cdc)25B调控小鼠受精卵发育的机制,利用Western印迹检测小鼠受精卵各时期Cdc25B的表达及Cdc2-Tyr15的磷酸化状态。利用间接免疫荧光技术观察Cdc25B在小鼠受精卵的定位。构建pEGFP-Cdc25B融合表达载体并显微注射到受精卵中,观察Cdc25B在受精卵M期的定位变化。结果表明Cdc25B在G1和S期被磷酸化,在G2和M期去磷酸化。Cdc2-Tyr15在G1和S期处于磷酸化状态,G2期只检测到Cdc2-Tyr15轻微的磷酸化信号,M期未检测到任何Cdc2-Tyr15的磷酸化信号。Cdc25B在G1期定位于细胞质和细胞核中,S和G2期定位于细胞质的皮质部分,M期由细胞质转向核区。证明Cdc25B核输出后激活有丝分裂促进因子,从而启动小鼠受精卵的有丝分裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号