首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of mtDNA markers in a population of the Nogays (n = 206), the people inhabiting the North Caucasus and speaking a Turkic language of the Altaic linguistic family, has revealed a high level of genetic diversity (H = 0.99). The identified haplotypes include all major West Eurasian haplogroups, with the prevalence of H and U clusters (22 and 21%, respectively), but the percentage of lineages specific for East Eurasian populations is the highest (40%). Some other mtDNA variants in the Nogay population belong to the M1 haplogroups typical of northeastern Africa and U2 characteristic of Indian populations. Thus, components of different origin have contributed to the gene pool of Nogays. An erratum to this article is available at .  相似文献   

2.
More than a third of the European pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroup (hg) H, the most frequent hg throughout western Eurasia. Although there has been considerable recent progress in studying mitochondrial genome variation in Europe at the complete sequence resolution, little data of comparable resolution is so far available for regions like the Caucasus and the Near and Middle East-areas where most of European genetic lineages, including hg H, have likely emerged. This gap in our knowledge causes a serious hindrance for progress in understanding the demographic prehistory of Europe and western Eurasia in general. Here we describe the phylogeography of hg H in the populations of the Near East and the Caucasus. We have analyzed 545 samples of hg H at high resolution, including 15 novel complete mtDNA sequences. As in Europe, most of the present-day Near Eastern-Caucasus area variants of hg H started to expand after the last glacial maximum (LGM) and presumably before the Holocene. Yet importantly, several hg H subclades in Near East and Southern Caucasus region coalesce to the pre-LGM period. Furthermore, irrespective of their common origin, significant differences between the distribution of hg H sub-hgs in Europe and in the Near East and South Caucasus imply limited post-LGM maternal gene flow between these regions. In a contrast, the North Caucasus mitochondrial gene pool has received an influx of hg H variants, arriving from the Ponto-Caspian/East European area.  相似文献   

3.
The now-emerging mitochondrial DNA (mtDNA) population genomics provides information for reconstructing a well-resolved mtDNA phylogeny and for discerning the phylogenetic status of the subcontinentally specific haplogroups. Although several major East Asian mtDNA haplogroups have been identified in studies elsewhere, some of the most basal haplogroups, as well as numerous minor subhaplogroups, were not yet determined or fully characterized. To fill the lacunae, we selected 48 mtDNAs from >2,000 samples across China for complete sequencing that cover virtually all (sub)haplogroups discernible to date in East Asia. This East Asian mtDNA phylogeny can henceforth serve as a solid basis for phylogeographic analyses of mtDNAs, as well as for studies of mitochondrial diseases in East and Southeast Asia.  相似文献   

4.
5.
人类线粒体DNA世系的系统发育关系研究   总被引:1,自引:0,他引:1  
孔庆鹏  张亚平 《生命科学》2008,20(4):540-548
本文以人类线粒体DNA为例,回顾了其系统发育关系的重建的研究历史,进而总结介绍了该分析方法在人类进化历史研究、线粒体DNA数据质量评估以及疾病相关线粒体DNA突变的甄别等方面的应用,以期对该方法在国内的推广应用有所裨益。  相似文献   

6.
The mitochondrial DNA (mtDNA) sequence variation of the South American Ticuna, the Central American Maya, and the North American Pima was analyzed by restriction-endonuclease digestion and oligonucleotide hybridization. The analysis revealed that Amerindian populations have high frequencies of mtDNAs containing the rare Asian RFLP HincII morph 6, a rare HaeIII site gain, and a unique AluI site gain. In addition, the Asian-specific deletion between the cytochrome c oxidase subunit II (COII) and tRNA(Lys) genes was also prevalent in both the Pima and the Maya. These data suggest that Amerindian mtDNAs derived from at least four primary maternal lineages, that new tribal-specific variants accumulated as these mtDNAs became distributed throughout the Americas, and that some genetic variation may have been lost when the progenitors of the Ticuna separated from the North and Central American populations.  相似文献   

7.
Molecular genetic analysis of ancient human remains is mostly based on mtDNA owing to its better preservation in human bones in comparison with nuclear DNA. A study was made of mtDNA extracted from human skeletons found in graves in Yakutia, in order to determine the haplotypes and to compare them with lineages of modern populations. Ancient DNA was extracted from fragments of three skeletons of Yakut graves at At-Dabaan, Ojuluun, and Jaraama sites (dating back to the 18th century) and two skeletons of the Late Neolithic Kerdugen grave (2000–1000 B.C.). All graves were found in central Yakutia (Churapchinskii, Khangalasskii, and Megino-Khangalasskii districts of Yakutia). Five different haplotypes belonging to specific Asian haplogroups were identified. The mtDNA lineages of Yakut graves belong to haplogroups C4a, D5a2, and B5b. The results indicate the continuity of mitochondrial lineages in the Yakut gene pool in the past 300 years. The haplotypes of two humans from the Kerdugen site graves belong to haplogroups A4 and G2a/D. These haplotypes were compared with those of 40000 Eurasian individuals, including 900 from Yakutia. No exact matches were found in Paleo-Asian populations of Chukchi, Eskimos, Koryaks, and Itelmen. Phylogenetically close haplotypes (±1 mutation) were found in Yakut and Evenk populations, as well as in some populations of China and South and West Siberia.  相似文献   

8.
Deep common ancestry of indian and western-Eurasian mitochondrial DNA lineages   总被引:22,自引:0,他引:22  
About a fifth of the human gene pool belongs largely either to Indo-European or Dravidic speaking people inhabiting the Indian peninsula. The 'Caucasoid share' in their gene pool is thought to be related predominantly to the Indo-European speakers. A commonly held hypothesis, albeit not the only one, suggests a massive Indo-Aryan invasion to India some 4,000 years ago [1]. Recent limited analysis of maternally inherited mitochondrial DNA (mtDNA) of Indian populations has been interpreted as supporting this concept [2] [3]. Here, this interpretation is questioned. We found an extensive deep late Pleistocene genetic link between contemporary Europeans and Indians, provided by the mtDNA haplogroup U, which encompasses roughly a fifth of mtDNA lineages of both populations. Our estimate for this split is close to the suggested time for the peopling of Asia and the first expansion of anatomically modern humans in Eurasia [4] [5] [6] [7] [8] and likely pre-dates their spread to Europe. Only a small fraction of the 'Caucasoid-specific' mtDNA lineages found in Indian populations can be ascribed to a relatively recent admixture.  相似文献   

9.
Domestic horses represent a genetic paradox: although they have the greatest number of maternal lineages (mtDNA) of all domestic species, their paternal lineages are extremely homogeneous on the Y-chromosome. In order to address their huge mtDNA variation and the origin and history of maternal lineages in domestic horses, we analyzed 1961 partial d-loop sequences from 207 ancient remains and 1754 modern horses. The sample set ranged from Alaska and North East Siberia to the Iberian Peninsula and from the Late Pleistocene to modern times. We found a panmictic Late Pleistocene horse population ranging from Alaska to the Pyrenees. Later, during the Early Holocene and the Copper Age, more or less separated sub-populations are indicated for the Eurasian steppe region and Iberia. Our data suggest multiple domestications and introgressions of females especially during the Iron Age. Although all Eurasian regions contributed to the genetic pedigree of modern breeds, most haplotypes had their roots in Eastern Europe and Siberia. We found 87 ancient haplotypes (Pleistocene to Mediaeval Times); 56 of these haplotypes were also observed in domestic horses, although thus far only 39 haplotypes have been confirmed to survive in modern breeds. Thus, at least seventeen haplotypes of early domestic horses have become extinct during the last 5,500 years. It is concluded that the large diversity of mtDNA lineages is not a product of animal breeding but, in fact, represents ancestral variability.  相似文献   

10.
The distribution of the diploid and triploid forms and the correspondence between ploidy and mitochondrial DNA (mtDNA) phylogenetic lineages of the silver crucian carp have been studied in Far Eastern water bodies and the Syr Darya River. Both diploid and triploid forms have been found in large river systems (the Amur, Suifun, Tumangan, and Syr Darya river basins). Only the diploid form has been detected in lakes of Bol'shoi Pelis Island (Peter the Great Bay of the Sea of Japan), Sakhalin Island, and the Kamchatka River basin (the Kamchatka Peninsula). It has been confirmed that there are two mtDNA phylogroups in the silver crucian carp in the area studied. Both mtDNA phylogenetic lineages are present in the Suifun and Tumangan river basins. Only one mtDNA phylogroup (characteristic of the gynogenetic form) has been detected in two samples from the Amur River and in the Syr Darya population. The other mtDNA phylogroup is predominant in insular populations and in Kamchatka. The gynogenetic form carries only mtDNA phylogroup I, whereas both phylogroups have been found in diploid bisexual fish. The existence of only two mtDNA phylogroups substantially differing from each other indicates that the gynogenetic form has emerged from the diploid form only once and evolved independently for a long time after that. The absence of haplotypes transitional between the two mtDNA phylogroups suggests that the secondary contact between the gynogenetic and bisexual forms in continental populations occurred within recent historical time. The obtained data confirm that genetic (though asymmetric) exchange between the two forms is possible, which explains the high morphological and, probably, genetic similarity between them.  相似文献   

11.
The variability of mtDNA was analysed in local sheep breeds reared throughout Turkey, for which a fragment of the D-loop region and the complete cytochrome b were sequenced. Phylogenetic analyses performed independently for the D-loop and the Cyt b gene revealed three clearly separated clusters indicating three major maternal lineages, two of which had been previously described as types B and A. The new type, C, was present in all the breeds analysed and showed considerable mtDNA variability. Divergence time was obtained on the basis of Cyt b gene and was estimated to be around 160,000-170,000 years ago for lineages B and A, whereas the divergence of lineage C proved to have occurred earlier (between 450,000 and 750,000 years ago). These times greatly predate domestication and suggest that the origin of modern sheep breeds was more complex than previously thought and that at least three independent sheep domestication events occurred. Our results, together with archaeological information and the current wild sheep populations in the Near East region support the high importance of this area in the sheep domestication process. Finally, the evidence of a third maternal lineage has important implications regarding the history of modern sheep.  相似文献   

12.
We report a remarkable pattern of incongruence between nuclear and mitochondrial variations in a social insect, the desert ant Cataglyphis hispanica. This species reproduces by social hybridogenesis. In all populations, two distinct genetic lineages coexist; non-reproductive workers develop from hybrid crosses between the lineages, whereas reproductive offspring (males and new queens) are typically produced asexually by parthenogenesis. Genetic analyses based on nuclear markers revealed that the two lineages remain highly differentiated despite constant hybridization for worker production. Here, we show that, in contrast with nuclear DNA, mitochondrial DNA (mtDNA) does not recover the two lineages as monophyletic. Rather, mitochondrial haplotypes cluster according to their geographical origin. We argue that this cytonuclear incongruence stems from introgression of mtDNA among lineages, and review the mechanisms likely to explain this pattern under social hybridogenesis.  相似文献   

13.
Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited.  相似文献   

14.

Background  

A proportion of 1/4 to 1/2 of North African female pool is made of typical sub-Saharan lineages, in higher frequencies as geographic proximity to sub-Saharan Africa increases. The Sahara was a strong geographical barrier against gene flow, at least since 5,000 years ago, when desertification affected a larger region, but the Arab trans-Saharan slave trade could have facilitate enormously this migration of lineages. Till now, the genetic consequences of these forced trans-Saharan movements of people have not been ascertained.  相似文献   

15.
To resolve the phylogeny of certain mitochondrial DNA (mtDNA) haplogroups in eastern Europe and estimate their evolutionary age, a total of 73 samples representing mitochondrial haplogroups U4, HV*, and R1 were selected for complete mitochondrial genome sequencing from a collection of about 2,000 control region sequences sampled in eastern (Russians, Belorussians, and Ukrainians) and western (Poles, Czechs, and Slovaks) Slavs. On the basis of whole-genome resolution, we fully characterized a number of haplogroups (HV3, HV4, U4a1, U4a2, U4a3, U4b, U4c, U4d, and R1a) that were previously described only partially. Our findings demonstrate that haplogroups HV3, HV4, and U4a1 could be traced back to the pre-Neolithic times ( approximately 12,000-19,000 years before present [YBP]) in eastern Europe. In addition, an ancient connection between the Caucasus/Europe and India has been revealed by analysis of haplogroup R1 diversity, with a split between the Indian and Caucasus/European R1a lineages occurring about 16,500 years ago. Meanwhile, some mtDNA subgroups detected in Slavs (such as U4a2a, U4a2*, HV3a, and R1a1) are definitely younger being dated between 6,400 and 8,200 YBP. However, robust age estimations appear to be problematic due to the high ratios of nonsynonymous to synonymous substitutions found in young mtDNA subclusters.  相似文献   

16.
Independent molecular markers (mitochondrial DNA sequences from two genes and fluorescence in situ hybridization with satellite DNA sequences as hybridization probes) were employed to investigate phylogenetic relationships among duiker antelope. When analyzed singly or taken together, the molecular and cytogenetic data allowed for the delimitation of four adaptive groups: the conservative dwarfs which are basal, a savanna specialist which groups apart from the forest duikers, the giant duikers, and the red duikers. Within the latter, a further subdivision comprising an east African and a west African red duiker clade is evident. The placement of the endangered zebra duiker and Aders' duiker remains problematic. Several of the nomenclatural divisions in current use are questioned by our results. These include the recognition of Philantomba as genus name for the blue and Maxwell's duiker and that Harvey's duiker be relegated to a subspecies of the Natal red duiker. We place our results in a biogeographic context and argue that duiker speciation has been driven predominantly by habitat fragmentation which probably led to the disruption of gene flow between geographic populations.  相似文献   

17.
PCR amplification of four chloroplast DNA (cpDNA) and two mitochondrial DNA (mtDNA) regions followed by restriction of the amplified products was used to identify restriction fragment length polymorphisms in 21 Actinidia taxa. Subsequently, the mode of organelle inheritance was investigated in both interspecific and intraspecific controlled crosses made between genotypes showing different cpDNA and/or mtDNA haplotypes. Fifty-six seedlings produced from three interspecific crosses, including in one case the pseudo reciprocal (different genotypes of the same species used as opposite parents), were checked for cpDNA inheritance, and 102 seedlings from the same interspecific crosses and 32 seedlings from two intraspecific crosses within the species A. deliciosa were checked for mtDNA inheritance. In all cases, cpDNA was inherited from the father and mtDNA was inherited from the mother. Maternal inheritance of mtDNA was expected, being the rule in plants, but A. deliciosa is the first genus in angiosperms for which a widespread and strictly paternal inheritance of cpDNA has been reported. Transmission of chloroplastic and mitochondrial genomes through opposite parents provides an exceptional opportunity for studying the paternal and maternal genetic lineages of species in the genus Actinidia.  相似文献   

18.
Investigations into the phylogenetics of closely related animal species are dominated by the use of mitochondrial DNA (mtDNA) sequence data. However, the near-ubiquitous use of mtDNA to infer phylogeny among closely related animal lineages is tempered by an increasing number of studies that document high rates of transfer of mtDNA genomes among closely related species through hybridization, leading to substantial discordance between phylogenies inferred from mtDNA and nuclear gene sequences. In addition, the recent development of methods that simultaneously infer a species phylogeny and estimate divergence times, while accounting for incongruence among individual gene trees, has ushered in a new era in the investigation of phylogeny among closely related species. In this study we assess if DNA sequence data sampled from a modest number of nuclear genes can resolve relationships of a species-rich clade of North American freshwater teleost fishes, the darters. We articulate and expand on a recently introduced method to infer a time-calibrated multi-species coalescent phylogeny using the computer program *BEAST. Our analyses result in well-resolved and strongly supported time-calibrated darter species tree. Contrary to the expectation that mtDNA will provide greater phylogenetic resolution than nuclear gene data; the darter species tree inferred exclusively from nuclear genes exhibits a higher frequency of strongly supported nodes than the mtDNA time-calibrated gene tree.  相似文献   

19.
In 1998, a unique subterranean ecosystem was discovered in numerous isolated calcrete (carbonate) aquifers in the arid Yilgarn region of Western Australia. Previous morphological and genetic analyses of a subterranean water beetle fauna suggest that calcrete aquifers are equivalent to closed island habitats that have been isolated for millions of years. We tested this hypothesis further by phylogeographic analyses of subterranean amphipods (Crangonyctoidea: Paramelitidae and Hyalidae) using mitochondrial DNA sequence data derived from the cytochrome oxidase I gene. Phylogenetic analyses and population genetic analyses (samova) provided strong evidence for the existence of at least 16 crangonyctoid and six hyalid divergent mitochondrial lineages, each restricted in their distribution to a single calcrete aquifer, in support of the 'subterranean island (archipelago) hypothesis' and extending its scope to include entirely water respiring invertebrates. Sequence divergence estimates between proximate calcrete populations suggest that calcretes have been isolated at least since the Pliocene, coinciding with a major aridity phase that led to the intermittent drying of surface water. The distribution of calcretes along palaeodrainage channels and on either side of drainage divides, have had less influence on the overall phylogeographic structure of populations, with evidence that ancestral crangonyctoid and hyalid species moved between catchments multiple times prior to their isolation within calcretes. At least two potential modes of evolution may account for the diversity of subterranean amphipod populations: dispersal/vicariance of stygobitic species or colonization of calcretes by surface species and independent evolution of stygobitic characteristics.  相似文献   

20.
In the loach Misgurnus anguillicaudatue, the asexual lineage, which produces unreduced clonal diploid eggs, has been identified. Among 833 specimens collected from 54 localities in Japan and two localities in China, 82 candidates of other lineage(s) of cryptic clones were screened by examining RFLP (restriction fragment length polymorphism)-PCR haplotypes in the control region of mtDNA. This analysis was performed because triploid loaches arise from the accidental incorporation of the sperm nucleus into unreduced diploid eggs of a clone. The categorization of members belonging to three newly identified lineages (clones 2–4) and the previously identified clonal lineage (clone 1) was verified by evaluating the genetic identity between two or more individuals from each clonal lineage based on RAPD (random amplified polymorphic DNA)-PCR and multilocus DNA fingerprints. We detected 75 haplotypes by observing the nucleotide status at variable sites from the control region of mtDNA. Phylogenic trees constructed from such sequences showed two highly diversified clades, A and B, that were beyond the level common for interspecific genetic differentiation. That result suggests that M. anguillicaudatus in Japan is not a single species entity. Two clone-specific mtDNA sequences were included in clade A, and the loaches with such sequences may be the maternal origin of the clones. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号